Navigation Links
Algae that live inside the cells of salamanders are the first known vertebrate endosymbionts
Date:4/4/2011

BLOOMINGTON, Ind. -- A species of algae long known to associate with spotted salamanders has been discovered to live inside the cells of developing embryos, say scientists from the U.S. and Canada, who report their findings in this week's Proceedings of the National Academy of Sciences.

This is the first known example of a eukaryotic algae living stably inside the cells of any vertebrate.

"It raises the possibility that more animal/algae symbioses exist that we are not aware of," said Indiana University Bloomington biologist Roger Hangarter, the PNAS report's sole American coauthor. "Since other salamanders and some frog species have similar algae/egg symbioses, it is possible that some of those will also have the type of endosymbioses we have seen in the spotted salamander."

Biologists Ryan Kerney, Eunsoo Kim, Aaron Heiss, and Brian Hall of Dalhousie University in Halifax, Nova Scotia, and Cory Bishop of St. Frances Xavier University in Antigonish, Nova Scotia, are the other members of the research team. Kerney was the report's lead author.

"We were particularly excited to discover this association in spotted salamander embryos, because this species was a model organism for early experimental embryology research and is a locally common salamander in eastern North America," Kerney said. "We hope that this study will highlight biodiversity research on common North American species, which can easily be overlooked or even considered over-studied."

Vertebrates are backboned animals. The group includes amphibians like the spotted salamander, as well as mammals, birds and reptiles. The rarity of vertebrate endosymbiosis, as the cell-within-a-cell association is called, has been thought to be the result of the animals' stringently xenophobic immune systems. Any foreign cell that manages to get as far as breaching a cell membrane normally triggers a number of slay-now-and-ask-questions-later gene systems.

Naturalists first noticed an association between spotted salamander eggs and green algae more than 100 years ago. This relationship was formalized by name in 1927 by Lambert Printz, who named the algal species Oophilia amblystoma. The genus name means "egg loving." The nature of that symbiosis was not known until the 1980s, when experimentation revealed the salamander embryos do not develop as quickly or as fully in the absence of the green algae. Likewise, algae grown separately from the embryos but in the presence of water exposed to the embryos also grew more robustly.

Despite decades of study, the revelation of an endosymbiosis between the amphibian and alga took many by surprise when Kereny presented preliminary information at a scientific meeting last year. The reason, Hangarter said, is that the algae cells were not easy to see by conventional light microscopy. Because the chlorophyll in the algae is highly fluorescent, the scientists were able to use modern fluorescent microscopy to probe to the salamanders.

They also used a short string of nucleic acids that targets and binds to a ribosomal RNA molecule unique to Oophilia (18S rRNA) and by a visualization technique called fluorescence in situ hybridization, they found that the algae RNA is pervasive within spotted salamander embryo cells.

"With the ability to use gene-specific probes, it is now possible to determine the presence of organisms that may not be easily visible by standard light microscopy," Hangarter said. "In the past, researchers looking with simpler light microscopy techniques than are available today failed to see any algae in the salamanders."

The symbiotic relationship between spotted salamanders and Oophilia is mutualistic because both creatures benefit. Symbiosis is a general category of species-species interaction in which the organisms share space for extended periods of time. Symbioses can benefit one organism and harm the other (parasitism), benefit both (mutualism), or benefit one creature and leave the other unaffected (commensalism).

Endosymbiosis is a special type of symbiosis, requiring one organism to live inside the cells of another. It is not yet known how the endosymbiotic infiltration of salamander embryo cells affects either the salamander or the alga. Anything is possible, despite the fact that the overall relationship between the two species is established as mutualistically beneficial.

Endosymbiosis also has special evolutionary significance, as it is presumed by biologists to have preceded the full integration of certain cell organelles, such as mitochondria and chloroplasts, special structures that perform unique functions within cells -- and possess their own chromosomes.

Kerney and Hangarter say they hope their ongoing work will inspire interest in local biology and respect for environmental protection.

"We would like this work to draw attention to a fascinating yet common backyard salamander, and hope that it will both raise awareness of the species and promote the preservation of their fragile breeding habitat," Kerney said.

Hangarter agreed, adding, "I think it is important for people to realize that you do not need to go to exotic locations to make interesting scientific discoveries. The vernal ponds that the salamanders mate in are also essential for many other amphibians and other organisms, but such ponds are often among the first things destroyed when humans develop in wooded areas. One 500 square-foot pond might service several thousand mating salamanders and frogs that might inhabit an area of a few acres of woodland."


'/>"/>

Contact: David Bricker
brickerd@indiana.edu
812-856-9035
Indiana University
Source:Eurekalert  

Related biology news :

1. Algae, bacteria hogged oxygen after ancient mass extinction, slowed marine life recovery
2. The green machine: Algae clean wastewater, convert to biodiesel
3. First identification of endocrine disruptors in algae blooms
4. UT researchers link algae to harmful estrogen-like compound in water
5. Ben-Gurion U. and PTT Chemical sign R&D agreement to commercialize green algae strain
6. Newly discovered group of algae live in both fresh water and ocean
7. Blue-green algae tested for treating ALS
8. LSU oceanography researcher discovers toxic algae in open water
9. Iron stimulates blooms of toxin-producing algae in open ocean, study finds
10. Algae for biofuels: Moving from promise to reality, but how fast?
11. Coral algae (symbiodinium) discovered in black corals at never seen before depths
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Algae that live inside the cells of salamanders are the first known vertebrate endosymbionts
(Date:2/8/2017)... 2017 Report Highlights The global ... $8.3 billion in 2016 at a compound annual growth ... Report Includes - An overview of the global market ... data from 2015 and 2016, and projections of compound ... the market on the basis of product type, source, ...
(Date:2/6/2017)... Feb. 6, 2017 According to Acuity ... driving border authorities to continue to embrace biometric ... are 2143 Automated Border Control (ABC) eGates and ... at more than 163 ports of entry across ... 2016 achieving a combined CAGR of 37%. APC ...
(Date:2/2/2017)... , Feb. 2, 2017  EyeLock LLC, a ... a new white paper " What You Should Know ... problem of ensuring user authenticity is a growing concern. ... authentication of users. However, traditional authentication schemes such as ... Biometric authentication offers an elegant solution to ...
Breaking Biology News(10 mins):
(Date:2/16/2017)... , Feb. 16, 2017  ArmaGen, Inc., ... groundbreaking therapies to treat severe neurological disorders, today ... treated with AGT-181, the company,s investigational therapy for ... known as mucopolysaccharidosis type I, or MPS I). ... proof-of-concept (POC) study, presented today at the 13 ...
(Date:2/16/2017)... , Feb. 16, 2017   Biostage, Inc. ... "Company"), a biotechnology company developing bioengineered organ implants to ... bronchus and trachea, announced today the closing on February ... 20,000,000 shares of common stock and warrants to purchase ... of $8.0 million. The offering was priced at $0.40 ...
(Date:2/16/2017)...  Dermata Therapeutics, LLC, a biotechnology company developing ... of dermatological diseases, today announced it has completed ... into a $5 million credit facility with Silicon ... capital for general corporate purposes to further Dermata,s ... of serious diseases treated by dermatologists.   ...
(Date:2/16/2017)... 2017  Windtree Therapeutics, Inc. (Nasdaq: ... aerosolized KL4 surfactant therapies for respiratory diseases, announced ... showed that aerosolized KL4 surfactant reduced lung inflammation ... animal model. The Company believes that these preclinical ... that supports the role of KL4 surfactant as ...
Breaking Biology Technology: