Navigation Links
Algae can draw energy from other plants
Date:11/20/2012

This press release is available in German.

Flowers need water and light to grow. Even children learn that plants use sunlight to gather energy from earth and water. Members of Professor Dr. Olaf Kruse's biological research team at Bielefeld University have made a groundbreaking discovery that one plant has another way of doing this. They have confirmed for the first time that a plant, the green alga Chlamydomonas reinhardtii, not only engages in photosynthesis, but also has an alternative source of energy: it can draw it from other plants. This finding could also have a major impact on the future of bioenergy. The research findings have been released on Tuesday 20 November in the online journal Nature Communications published by the renowned journal Nature.

Until now, it was believed that only worms, bacteria, and fungi could digest vegetable cellulose and use it as a source of carbon for their growth and survival. Plants, in contrast, engage in the photosynthesis of carbon dioxide, water, and light. In a series of experiments, Professor Dr. Olaf Kruse and his team cultivated the microscopically small green alga species Chlamydomonas reinhardtii in a low carbon dioxide environment and observed that when faced with such a shortage, these single-cell plants can draw energy from neighbouring vegetable cellulose instead. The alga secretes enzymes (so-called cellulose enzymes) that 'digest' the cellulose, breaking it down into smaller sugar components. These are then transported into the cells and transformed into a source of energy: the alga can continue to grow. 'This is the first time that such a behaviour has been confirmed in a vegetable organism', says Professor Kruse. 'That algae can digest cellulose contradicts every previous textbook. To a certain extent, what we are seeing is plants eating plants'. Currently, the scientists are studying whether this mechanism can also be found in other types of alga. Preliminary findings indicate that this is the case.

In the future, this 'new' property of algae could also be of interest for bioenergy production. Breaking down vegetable cellulose biologically is one of the most important tasks in this field. Although vast quantities of waste containing cellulose are available from, for example, field crops, it cannot be transformed into biofuels in this form. Cellulose enzymes first have to break down the material and process it. At present, the necessary cellulose enzymes are extracted from fungi that, in turn, require organic material in order to grow. If, in future, cellulose enzymes can be obtained from algae, there would be no more need for the organic material to feed the fungi. Then even when it is confirmed that algae can use alternative nutrients, water and light suffice for them to grow in normal conditions.


'/>"/>
Contact: Dr. Olaf Kruse
olaf.kruse@uni-bielefeld.de
49-521-106-2257
University of Bielefeld
Source:Eurekalert  

Related biology news :

1. A project to research biological and chemical aspects of microalgae to fuel approach
2. Algae biofuels: the wave of the future
3. Carbon is key for getting algae to pump out more oil
4. A nanoscopic look at the estuarys green algae
5. Viruses linked to algae that control coral health
6. Ecologist: Genetically engineered algae for biofuel pose potential risks that should be studied
7. U OF A expert pinpoints nutrient behind fresh water algae blooms
8. Oil from algae closer to reality through studies by unique collaboration of scientists
9. The slippery slope to slime: Overgrown algae causing coral reef declines
10. DNA analysis aids in classifying single-celled algae
11. Story tips From the Department of Energys Oak Ridge National Laboratory, March 2012
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Algae can draw energy from other plants
(Date:4/28/2016)... , April 28, 2016 First quarter ... (139.9), up 966% compared with the first quarter of 2015 ... totaled SEK 589.1 M (loss: 18.8) and the operating margin was ... (loss: 0.32) Cash flow from operations was SEK 249.9 ... 2016 revenue guidance is unchanged, SEK 7,000-8,500 M. The ...
(Date:4/26/2016)... , April 27, 2016 ... "Global Multi-modal Biometrics Market 2016-2020"  report to their ... , The analysts forecast the global ... of 15.49% during the period 2016-2020.  ... of sectors such as the healthcare, BFSI, transportation, ...
(Date:4/15/2016)... CHICAGO , April 15, 2016  A ... companies make more accurate underwriting decisions in a ... offering timely, competitively priced and high-value life insurance ... health screenings. With Force Diagnostics, rapid ... and lifestyle data readings (blood pressure, weight, pulse, ...
Breaking Biology News(10 mins):
(Date:4/29/2016)... , April 29, 2016 ... Transparency Market Research "Separation Systems for Commercial Biotechnology ... Trends, and Forecast 2015 - 2023", the separation ... US$ 10,665.5 Mn in 2014 and is projected ... 2015 to 2023 to reach US$ 19,227.8 Mn ...
(Date:4/28/2016)... The report "Cryocooler Market by ... (Technical Support, Product Repairs & Refurbishment, Preventive Maintenance, and ... 2022", published by MarketsandMarkets, the global market is expected ... a CAGR of 7.29% between 2016 and 2022. ... Figures spread through 159 Pages and in-depth TOC on ...
(Date:4/28/2016)... Connecticut (PRWEB) , ... April 28, 2016 , ... ... Group, Inc., will hold an open house for regional manufacturers at its Maple ... displays from Tsugami, Okuma, Hardinge Group, Chiron and Trumpf. Almost 20 leading ...
(Date:4/27/2016)... VANCOUVER, British Columbia , April 27, 2016 ... "Gesellschaft" oder "NanoStruck") (CSE: NSK) (OTCPink: NSKQB) ( ... sie im Anschluss an ihre Pressemitteilung vom 13. ... Inc. erhalten hat, ihre Finanzen um zusätzliche 200.000.000 ... auf 4.000.000 Kanadische Dollar zu bringen. Davon wurden ...
Breaking Biology Technology: