Navigation Links
Algae can draw energy from other plants
Date:11/20/2012

This press release is available in German.

Flowers need water and light to grow. Even children learn that plants use sunlight to gather energy from earth and water. Members of Professor Dr. Olaf Kruse's biological research team at Bielefeld University have made a groundbreaking discovery that one plant has another way of doing this. They have confirmed for the first time that a plant, the green alga Chlamydomonas reinhardtii, not only engages in photosynthesis, but also has an alternative source of energy: it can draw it from other plants. This finding could also have a major impact on the future of bioenergy. The research findings have been released on Tuesday 20 November in the online journal Nature Communications published by the renowned journal Nature.

Until now, it was believed that only worms, bacteria, and fungi could digest vegetable cellulose and use it as a source of carbon for their growth and survival. Plants, in contrast, engage in the photosynthesis of carbon dioxide, water, and light. In a series of experiments, Professor Dr. Olaf Kruse and his team cultivated the microscopically small green alga species Chlamydomonas reinhardtii in a low carbon dioxide environment and observed that when faced with such a shortage, these single-cell plants can draw energy from neighbouring vegetable cellulose instead. The alga secretes enzymes (so-called cellulose enzymes) that 'digest' the cellulose, breaking it down into smaller sugar components. These are then transported into the cells and transformed into a source of energy: the alga can continue to grow. 'This is the first time that such a behaviour has been confirmed in a vegetable organism', says Professor Kruse. 'That algae can digest cellulose contradicts every previous textbook. To a certain extent, what we are seeing is plants eating plants'. Currently, the scientists are studying whether this mechanism can also be found in other types of alga. Preliminary findings indicate that this is the case.

In the future, this 'new' property of algae could also be of interest for bioenergy production. Breaking down vegetable cellulose biologically is one of the most important tasks in this field. Although vast quantities of waste containing cellulose are available from, for example, field crops, it cannot be transformed into biofuels in this form. Cellulose enzymes first have to break down the material and process it. At present, the necessary cellulose enzymes are extracted from fungi that, in turn, require organic material in order to grow. If, in future, cellulose enzymes can be obtained from algae, there would be no more need for the organic material to feed the fungi. Then even when it is confirmed that algae can use alternative nutrients, water and light suffice for them to grow in normal conditions.


'/>"/>
Contact: Dr. Olaf Kruse
olaf.kruse@uni-bielefeld.de
49-521-106-2257
University of Bielefeld
Source:Eurekalert  

Related biology news :

1. A project to research biological and chemical aspects of microalgae to fuel approach
2. Algae biofuels: the wave of the future
3. Carbon is key for getting algae to pump out more oil
4. A nanoscopic look at the estuarys green algae
5. Viruses linked to algae that control coral health
6. Ecologist: Genetically engineered algae for biofuel pose potential risks that should be studied
7. U OF A expert pinpoints nutrient behind fresh water algae blooms
8. Oil from algae closer to reality through studies by unique collaboration of scientists
9. The slippery slope to slime: Overgrown algae causing coral reef declines
10. DNA analysis aids in classifying single-celled algae
11. Story tips From the Department of Energys Oak Ridge National Laboratory, March 2012
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Algae can draw energy from other plants
(Date:11/22/2016)... 2016   MedNet Solutions , an innovative SaaS-based ... clinical research, is pleased to announce that the company ... Life Sciences Awards as "Most Outstanding in eClinical ... year of recognition and growth for MedNet, which has ... iMedNet ™ , MedNet,s flagship ...
(Date:11/17/2016)... Calif. , Nov. 17, 2016  AIC announces that it has just released ... in organizations that require high-performance scale-out plus high speed data transfer storage solutions. ... ... ... Setting up a high ...
(Date:11/14/2016)... Technology, Inc. ("xG" or the "Company") (Nasdaq: XGTI, XGTIW), ... in challenging operating environments, announced its results for the ... a conference call to discuss these results on November ... Key Recent Accomplishments ... acquire Vislink Communication Systems. The purchase is expected to ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... York, NY (PRWEB) , ... December 01, 2016 , ... ... event is expanding to three days and will take place on February 1-3, 2017 ... (GSK) and Dr James Gulley (NCI), the program provides a unique 360-degree approach, which ...
(Date:12/2/2016)... ... December 02, 2016 , ... ... biotechnology companies dedicated to collaboratively developing improved chemistry, manufacturing and control technologies ... portable online UHPLC, with robust, probe-based sampling. , Online liquid chromatography ...
(Date:12/2/2016)... December 2, 2016 The immunohistochemistry (IHC) ... at a CAGR of 7.3% during the forecast period of 2016 ... diagnostic laboratories segment accounted for the largest share of immunohistochemistry (IHC) ... , ... global immunohistochemistry (IHC) market spread across 225 pages, profiling 10 companies ...
(Date:11/30/2016)...  GenomOncology today announced the appointment of Joshua F. ... Dr. Coleman will oversee clinical content development and ... The GenomOncology software suite empowers molecular pathologists with a seamless ... decision support, from quality control through reporting. ... , , ...
Breaking Biology Technology: