Navigation Links
Adult stem cells activated in mammalian brain
Date:7/24/2008

Irvine, Calif., July 24, 2008 Adult stem cells originate in a different part of the brain than is commonly believed, and with proper stimulation they can produce new brain cells to replace those lost to disease or injury, a study by UC Irvine scientists has shown.

Evidence strongly shows that the true stem cells in the mammalian brain are the ependymal cells that line the ventricles in the brain and spinal cord, rather than cells in the subventricular zone as biologists previously believed. Brain ventricles are hollow chambers filled with fluid that supports brain tissue, and a layer of ependymal cells lines these ventricles.

Knowing the cell source is crucial when developing stem cell-based therapies. Additionally, knowing that these normally dormant cells can be coaxed into dividing lays the groundwork for future therapies in which a patient's own stem cells produce new brain cells to treat neurological disorders and injuries such as Parkinson's disease, stroke or traumatic brain injury.

"With such a therapy, we would know which cells in the body to target for activation, and their offspring would have all the properties necessary to replace damaged or missing cells," said Darius Gleason, lead author of the study and a graduate student in the Department of Developmental and Cell Biology. "It is a very promising approach to stem cell therapy."

Study results appear this month online in the journal Neuroscience.

Stem cells are the "master cells" that produce each of the specialized cells within the human body. If researchers could control the production and differentiation of stem cells, they may be able to use them to replace damaged tissues.

One focus of stem cell research is transplantation, which entails injecting into the body healthy cells that may or may not genetically match the patient. Transplantation of nonmatching stem cells requires the use of drugs to prevent the body from rejecting the treatment.

But, working with a patient's own cells would eliminate the need for transplantation and immunosuppressant drugs and may be a better alternative, scientists say. Ependymal cells line the fluid-filled ventricles, so a drug to activate the cells could theoretically travel through this fluid directly to the stem cells.

"The cells already match your brain completely since they have the same genetic make-up. That is a huge advantage over any other approach that uses cells from a donor," Gleason said. "If they are your cells, then all we are doing is helping your body fix itself. We're not reinventing the repair process."

In this study, Gleason and Peter Bryant, developmental and cell biology professor, used rats treated to develop the animal equivalent of Parkinson's disease. They chose this type of rat because in a previous study by UCI collaborator James Fallon, a small protein given to the brain-damaged rats sparked a rapid and massive production and migration of new cells, and significantly improved motor behavior.

First, the UCI researchers sought to determine the true location of stem cells in the rats by looking for polarized cells, which have different sets of proteins on opposite sides so that when one divides it can produce two different products. Polarization gives rise to asymmetric cell division, which produces one copy of the parent and a second cell that is programmed to turn into another cell type. Asymmetric cell division is the defining characteristic of a stem cell.

On rat brain samples, the researchers applied antibodies to identify proteins that may be involved in asymmetric cell division, and they found that polarization exists on the ependymal cells. "It couldn't have been a stronger signal or clearer message. We could see that the only cells undergoing asymmetric cell division were the ependymal cells," Gleason said.

Next, they gave a drug to induce cell division in the rats and examined their brains at intervals ranging from one to 28 days after the treatment. At each interval, they counted cells that were dividing in the ependymal layer. They found the most division at 28 days, when about one-quarter of the ependymal cells were dividing. Previous studies by researchers at other institutions were successful in getting only a few cells to divide in that layer.

"One interpretation of previous studies is there are scattered stem cells in the ependymal layer, and it is hard to locate them," Bryant said. "But we believe that all of the ependymal cells are stem cells, and that they all have the ability to be activated."

Researchers don't know yet what sparks cell division at the molecular level, but learning that process and how to control it could lead to a safe, effective stem cell therapy.


'/>"/>

Contact: Jennifer Fitzenberger
jfitzen@uci.edu
949-824-3969
University of California - Irvine
Source:Eurekalert

Related biology news :

1. Childrens Memorial Hospital of Chicago receives a grant from BioMarin to support adult PKU outreach
2. Salk researchers reprogram adult stem cells in their natural environment
3. U of M researchers discover gene linked to adult-onset obesity
4. Caloric intake negatively influences healthy adults sleep patterns
5. Fat intake negatively influences the sleep pattern in healthy adults
6. Natural compounds in cocoa tied to blood flow improvements for adults with type 2 diabetes
7. UC Davis stem researchers demonstrate safety of gene therapy using adult stem cells
8. Stem cells and cancer: cancer pathways that also control the adult stem cell population
9. Scientists uncover the potential to control adult stem cells
10. RING finger protein 5 may guide treatment for muscle disease in older adults
11. Hungry mothers risk addiction in their adult children
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/2/2016)... NEW YORK , June 2, 2016   The ... (Weather), is announcing Watson Ads, an industry-first capability in which ... advertising, by being able to ask questions via voice or ... Marketers have long ... with the consumer, that can be personal, relevant and valuable; ...
(Date:6/1/2016)... June 1, 2016 Favorable Government ... Administration and Criminal Identification to Boost Global Biometrics System ... released TechSci Research report, " Global Biometrics Market ... Forecast and Opportunities, 2011 - 2021", the global biometrics ... 2021, on account of growing security concerns across various ...
(Date:5/20/2016)... MINNEAPOLIS , May 20, 2016  VoiceIt ... technology partnership with VoicePass. By working ... user experience.  Because VoiceIt and VoicePass take slightly ... two engines increases both security and usability. ... expressed excitement about this new partnership. ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... ... at the Pennsylvania Convention Center and will showcase its product’s latest features from ... also be presenting a scientific poster on Disrupting Clinical Trials in The Cloud ...
(Date:6/23/2016)... ... 2016 , ... Velocity Products, a division of Morris Group, ... exclusively for Okuma CNC machining centers at The International Manufacturing Technology Show, IMTS, ... companies with expertise in toolholding, cutting tools, machining dynamics and distribution, Velocity SMART ...
(Date:6/23/2016)... PUNE, India , June 23, 2016 /PRNewswire/ ... culture media market research report to its pharmaceuticals ... company profiles, product details and much more. ... market spread across 151 pages, profiling 15 companies ... now available at http://www.reportsnreports.com/reports/601420-global-cell-culture-media-industry-2016-market-research-report.html . ...
(Date:6/22/2016)... DUBLIN , June 22, 2016 Research ... and Global Markets" report to their offering. ... $39.4 billion in 2014 from $29.3 billion in 2013. The market ... (CAGR) of 13.8% from 2015 to 2020, increasing from $50.6 billion ... and projected product forecasts during the forecast period (2015 to 2020) ...
Breaking Biology Technology: