Navigation Links
Acoustic tweezers capture tiny creatures with ultrasound
Date:6/29/2012

University Park, Pa. -- A device about the size of a dime can manipulate living materials such as blood cells and entire small organisms, using sound waves, according to a team of bioengineers and biochemists from Penn State.

The device, called acoustic tweezers, is the first technology capable of touchlessly trapping and manipulating Caenorhabditis elegans (C. elegans), a one millimeter long roundworm that is an important model system for studying diseases and development in humans. Acoustic tweezers are also capable of precisely manipulating cellular-scale objects that are essential to many areas of fundamental biomedical research.

Acoustic tweezers use ultrasound, the same noninvasive technology doctors use to capture images of the fetus in the womb. The device is based on piezoelectric material that moves when under an electrical current. The vibrations pass through transducers attached to the piezoelectric substrate, where they are converted into standing surface acoustic waves (SAWs). The SAWs create pressure fields in the liquid medium that hold the specimen. The simple electronics in the device can tune the SAWs to precisely and noninvasively hold and move the specimen or inorganic object.

"We believe the device can be easily manufactured at a cost far lower than say, optical tweezers, which use lasers to manipulate single particles," said Tony Jun Huang, associate professor of bioengineering, whose group pioneered acoustic tweezers. "Optical tweezers require power densities 10,000,000 times greater than our acoustic tweezers, and the lasers can heat up and damage the cells, unlike ultrasound."

For many biological systems, acoustic tweezers will provide an excellent tool to mimic the conditions inside the body where cells are subject to waves of pressure and pulses of chemicals. The researchers published their results in this week's online edition of the Proceedings of the National Academy of Sciences.

"Acoustic tweezers will be used to position cells for interrogation by pulses of drug-like molecules to test as well as to exert mechanical forces on the cell wall," according to Stephen Benkovic, Evan Pugh Professor of Chemistry and holder of the Eberly Family Chair in Chemistry, whose group contributed to the paper, "The cells will contain bio-chemical markers, so we can observe the effect of drug pulses or pressure on the cell's biochemistry."

Acoustic tweezers are very versatile, said Huang. "We can manipulate a single cell or we can manipulate tens of thousands of cells at the same time."

Currently, the size of objects that can be moved with acoustic tweezers ranges from micrometers to millimeters, although with higher frequencies, it should be possible to move objects in the nanoscale regime, the researchers believe. Further work will include modifying the device to accommodate more fundamental biomedical studies with the Benkovic group.

Ultimately, the patent pending technology could lead to compact, noninvasive and inexpensive point-of-care applications, such as blood cell and cancer cell sorting and diagnostics. For now, the ability to trap and manipulate a living C. elegans for study is proof of their device's potential utility.


'/>"/>

Contact: Walt Mills
wem12@psu.edu
814-865-0285
Penn State
Source:Eurekalert  

Related biology news :

1. Satellite captures images of sandstorm
2. Bacterial shock to recapture essential phosphate
3. Its a trap! New laboratory technique captures microRNA targets
4. Nea Kameni volcano movement captured by Envisat
5. Computer model pinpoints prime materials for efficient carbon capture
6. New materials could slash energy costs for CO2 capture
7. Pitcher plant uses rain drops to capture prey
8. Ultrasound idea: Prototype NIST/CU bioreactor evaluates engineered tissue while creating it
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Acoustic tweezers capture tiny creatures with ultrasound
(Date:4/5/2017)... 2017 Today HYPR Corp. , leading ... component of the HYPR platform is officially FIDO® ... security architecture that empowers biometric authentication across Fortune 500 ... secured over 15 million users across the financial services ... home product suites and physical access represent a growing ...
(Date:4/4/2017)... , April 4, 2017   EyeLock LLC , ... that the United States Patent and Trademark Office (USPTO) ... covers the linking of an iris image with a ... and represents the company,s 45 th issued patent. ... is very timely given the multi-modal biometric capabilities that ...
(Date:3/30/2017)... -- On April 6-7, 2017, Sequencing.com will host the world,s ... at Microsoft,s headquarters in Redmond, Washington ... health and wellness apps that provide a unique, personalized ... is the first hackathon for personal genomics and the ... the genomics, tech and health industries are sending teams ...
Breaking Biology News(10 mins):
(Date:8/21/2017)... Arbor, MI (PRWEB) , ... August 21, 2017 ... ... Innovation Awards: Healthcare Edition 2017. The awards recognize medical centers that have implemented ... by their efficiency of patient care protocols, competitive advantages, financial impact/value, and market ...
(Date:8/21/2017)... (PRWEB) , ... August 21, 2017 , ... ... firm is utilizing its extensive experience with Health Economics and Outcomes Research (HEOR) ... Health Record data. In 2014, US healthcare spending exceeded $3.0 trillion with nearly ...
(Date:8/21/2017)... Francisco, California (PRWEB) , ... August 21, 2017 , ... ... collaborate for a project, funded by a Bill and Melinda Gates Foundation ... contraception. , Bill & Melinda Gates Foundation, also known as the Gates Foundation, is ...
(Date:8/18/2017)... ... August 18, 2017 , ... OAI, a leading Silicon ... Microfluidics Industries, announces the new Model 800E front and backside, semi-automatic mask aligner ... mask aligners. OAI has already received and installed several orders for the ...
Breaking Biology Technology: