Navigation Links
Acoustic tweezers capture tiny creatures with ultrasound
Date:6/29/2012

University Park, Pa. -- A device about the size of a dime can manipulate living materials such as blood cells and entire small organisms, using sound waves, according to a team of bioengineers and biochemists from Penn State.

The device, called acoustic tweezers, is the first technology capable of touchlessly trapping and manipulating Caenorhabditis elegans (C. elegans), a one millimeter long roundworm that is an important model system for studying diseases and development in humans. Acoustic tweezers are also capable of precisely manipulating cellular-scale objects that are essential to many areas of fundamental biomedical research.

Acoustic tweezers use ultrasound, the same noninvasive technology doctors use to capture images of the fetus in the womb. The device is based on piezoelectric material that moves when under an electrical current. The vibrations pass through transducers attached to the piezoelectric substrate, where they are converted into standing surface acoustic waves (SAWs). The SAWs create pressure fields in the liquid medium that hold the specimen. The simple electronics in the device can tune the SAWs to precisely and noninvasively hold and move the specimen or inorganic object.

"We believe the device can be easily manufactured at a cost far lower than say, optical tweezers, which use lasers to manipulate single particles," said Tony Jun Huang, associate professor of bioengineering, whose group pioneered acoustic tweezers. "Optical tweezers require power densities 10,000,000 times greater than our acoustic tweezers, and the lasers can heat up and damage the cells, unlike ultrasound."

For many biological systems, acoustic tweezers will provide an excellent tool to mimic the conditions inside the body where cells are subject to waves of pressure and pulses of chemicals. The researchers published their results in this week's online edition of the Proceedings of the National Academy of Sciences.

"Acoustic tweezers will be used to position cells for interrogation by pulses of drug-like molecules to test as well as to exert mechanical forces on the cell wall," according to Stephen Benkovic, Evan Pugh Professor of Chemistry and holder of the Eberly Family Chair in Chemistry, whose group contributed to the paper, "The cells will contain bio-chemical markers, so we can observe the effect of drug pulses or pressure on the cell's biochemistry."

Acoustic tweezers are very versatile, said Huang. "We can manipulate a single cell or we can manipulate tens of thousands of cells at the same time."

Currently, the size of objects that can be moved with acoustic tweezers ranges from micrometers to millimeters, although with higher frequencies, it should be possible to move objects in the nanoscale regime, the researchers believe. Further work will include modifying the device to accommodate more fundamental biomedical studies with the Benkovic group.

Ultimately, the patent pending technology could lead to compact, noninvasive and inexpensive point-of-care applications, such as blood cell and cancer cell sorting and diagnostics. For now, the ability to trap and manipulate a living C. elegans for study is proof of their device's potential utility.


'/>"/>

Contact: Walt Mills
wem12@psu.edu
814-865-0285
Penn State
Source:Eurekalert  

Related biology news :

1. Satellite captures images of sandstorm
2. Bacterial shock to recapture essential phosphate
3. Its a trap! New laboratory technique captures microRNA targets
4. Nea Kameni volcano movement captured by Envisat
5. Computer model pinpoints prime materials for efficient carbon capture
6. New materials could slash energy costs for CO2 capture
7. Pitcher plant uses rain drops to capture prey
8. Ultrasound idea: Prototype NIST/CU bioreactor evaluates engineered tissue while creating it
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Acoustic tweezers capture tiny creatures with ultrasound
(Date:4/24/2017)... Janice Kephart , former 9/11 ... Partners, LLP (IdSP) , today issues the following ... March 6, 2017 Executive Order: Protecting the ... be instilled with greater confidence, enabling the reactivation ... applications are suspended by until at least July ...
(Date:4/17/2017)... April 17, 2017 NXT-ID, Inc. (NASDAQ: ... the filing of its 2016 Annual Report on Form 10-K on ... ... is available in the Investor Relations section of the Company,s website ... SEC,s website at http://www.sec.gov . 2016 Year Highlights: ...
(Date:4/11/2017)... , April 11, 2017 Crossmatch®, ... secure authentication solutions, today announced that it has ... Advanced Research Projects Activity (IARPA) to develop next-generation ... program. "Innovation has been a driving ... Thor program will allow us to innovate and ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... The Blavatnik ... Winners and six Finalists of the 2017 Blavatnik Regional Awards for Young Scientists. ... Foundation and administered by the New York Academy of Sciences to honor the ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... launched Rosalind™, the first-ever genomics analysis platform specifically designed for life science ... in honor of pioneering researcher Rosalind Franklin, who made a major contribution ...
(Date:10/11/2017)... Md. (PRWEB) , ... October 11, 2017 , ... ... digital pathology, announced today it will be hosting a Webinar titled, “Pathology is ... Advanced Pathology Associates , on digital pathology adoption best practices and how Proscia ...
(Date:10/11/2017)... ... October 11, 2017 , ... Singh ... orphan drug designation to SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of ... SBT-100 is able to cross the cell membrane and bind intracellular STAT3 and ...
Breaking Biology Technology: