Navigation Links
Acoustic tweezers capture tiny creatures with ultrasound
Date:6/29/2012

University Park, Pa. -- A device about the size of a dime can manipulate living materials such as blood cells and entire small organisms, using sound waves, according to a team of bioengineers and biochemists from Penn State.

The device, called acoustic tweezers, is the first technology capable of touchlessly trapping and manipulating Caenorhabditis elegans (C. elegans), a one millimeter long roundworm that is an important model system for studying diseases and development in humans. Acoustic tweezers are also capable of precisely manipulating cellular-scale objects that are essential to many areas of fundamental biomedical research.

Acoustic tweezers use ultrasound, the same noninvasive technology doctors use to capture images of the fetus in the womb. The device is based on piezoelectric material that moves when under an electrical current. The vibrations pass through transducers attached to the piezoelectric substrate, where they are converted into standing surface acoustic waves (SAWs). The SAWs create pressure fields in the liquid medium that hold the specimen. The simple electronics in the device can tune the SAWs to precisely and noninvasively hold and move the specimen or inorganic object.

"We believe the device can be easily manufactured at a cost far lower than say, optical tweezers, which use lasers to manipulate single particles," said Tony Jun Huang, associate professor of bioengineering, whose group pioneered acoustic tweezers. "Optical tweezers require power densities 10,000,000 times greater than our acoustic tweezers, and the lasers can heat up and damage the cells, unlike ultrasound."

For many biological systems, acoustic tweezers will provide an excellent tool to mimic the conditions inside the body where cells are subject to waves of pressure and pulses of chemicals. The researchers published their results in this week's online edition of the Proceedings of the National Academy of Sciences.

"Acoustic tweezers will be used to position cells for interrogation by pulses of drug-like molecules to test as well as to exert mechanical forces on the cell wall," according to Stephen Benkovic, Evan Pugh Professor of Chemistry and holder of the Eberly Family Chair in Chemistry, whose group contributed to the paper, "The cells will contain bio-chemical markers, so we can observe the effect of drug pulses or pressure on the cell's biochemistry."

Acoustic tweezers are very versatile, said Huang. "We can manipulate a single cell or we can manipulate tens of thousands of cells at the same time."

Currently, the size of objects that can be moved with acoustic tweezers ranges from micrometers to millimeters, although with higher frequencies, it should be possible to move objects in the nanoscale regime, the researchers believe. Further work will include modifying the device to accommodate more fundamental biomedical studies with the Benkovic group.

Ultimately, the patent pending technology could lead to compact, noninvasive and inexpensive point-of-care applications, such as blood cell and cancer cell sorting and diagnostics. For now, the ability to trap and manipulate a living C. elegans for study is proof of their device's potential utility.


'/>"/>

Contact: Walt Mills
wem12@psu.edu
814-865-0285
Penn State
Source:Eurekalert  

Related biology news :

1. Satellite captures images of sandstorm
2. Bacterial shock to recapture essential phosphate
3. Its a trap! New laboratory technique captures microRNA targets
4. Nea Kameni volcano movement captured by Envisat
5. Computer model pinpoints prime materials for efficient carbon capture
6. New materials could slash energy costs for CO2 capture
7. Pitcher plant uses rain drops to capture prey
8. Ultrasound idea: Prototype NIST/CU bioreactor evaluates engineered tissue while creating it
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Acoustic tweezers capture tiny creatures with ultrasound
(Date:3/13/2017)... , March 13, 2017 Future of security: Biometric Face ... ... DERMALOGs Face Matching enables to match face pictures against ... basis to identify individuals. (PRNewsFoto/Dermalog Identification Systems) ... DERMALOG,s "Face Matching" is the fastest software for biometric Face Matching ...
(Date:3/6/2017)... 6, 2017 Mintigo , the ... announced Predictive Sales Coach TM , its new ... intelligence into Salesforce. This unique AI application will ... organizations with deep knowledge of their customers and ... engagement. Predictive Sales Coach extends Mintigo,s existing customer ...
(Date:3/1/2017)... 2017  Aware, Inc. (NASDAQ: AWRE), a leading supplier ... P. Moberg has resigned, effective March 3, 2017, ... Officer and Treasurer of Aware citing a desire to ... member of the Board of Directors of Aware. ... Officer and co-President, General Counsel has been named Chief ...
Breaking Biology News(10 mins):
(Date:3/23/2017)... -- Research and Markets has announced the addition ... their offering. ... The Global Market for Bioproducts Should Reach $714.6 ... CAGR of 8.9%, This research report quantifies ... major product segments: bio-derived chemicals, biofuels, pharmaceuticals (biodrugs and herbal/botanicals), ...
(Date:3/23/2017)... Branford, CT (PRWEB) , ... March 23, 2017 ... ... Counsel, LLC, was recently selected by the Connecticut Technology Council (CTC) as a ... honored at CTC’s thirteenth annual Women of Innovation Awards Dinner. , The dinner ...
(Date:3/23/2017)... 2017 In today,s pre-market research, ... the Biotech industry: Sangamo Therapeutics Inc. (NASDAQ: SGMO), Eyegate ... SYN), and Regulus Therapeutics Inc. (NASDAQ: RGLS ... Suisse upgraded its rating on Pharmaceuticals/Biotechnology to "Overweight" from "Market Weight." Learn ... at: ...
(Date:3/22/2017)... , March 22, 2017  UBM and ... to announce their extended partnership and the third ... headlined by the 21 st Annual MassMEDIC ... taking place May 3-4, 2017. ... Technology Association (ADVAMED) President and CEO, Scott ...
Breaking Biology Technology: