Navigation Links
Achilles heel: Popular drug-carrying nanoparticles get trapped in bloodstream
Date:2/5/2013

ANN ARBORMany medically minded researchers are in hot pursuit of designs that will allow drug-carrying nanoparticles to navigate tissues and the interiors of cells, but University of Michigan engineers have discovered that these particles have another hurdle to overcome: escaping the bloodstream.

Drug delivery systems promise precision targeting of diseased tissue, meaning that medicines could be more effective at lower doses and with fewer side effects. Such an approach could treat plaques in arteries, which can lead to heart attacks or strokes.

Drug carriers would identify inflamed vessel walls and deliver a drug that removes the deposits of calcium, cholesterol and other substances. Or, the carriers might seek out markers of cancer and kill off the small blood vessels in tumors, starving the malignant tissue of food and oxygen.

Nanoparticles, which have diameters under one micron, or one-thousandth of a millimeter, are thought to be the most promising drug carriers. Omolola Eniola-Adefeso, U-M professor of chemical engineering who studies nanoparticles in flowing blood, says the immune system can't get rid of them quickly.

"It's hard for a white blood cell to understand it has a nanoparticle next to it," she said.

Those same tiny dimensions allow them to slip through the cracks between cells and infiltrate cell membranes, where they can go to work administering medicine. But Eniola-Adefeso and her team found that these particles have an Achilles heel.

Blood vessels are the body's highways, and once nanoparticles get into the flow, they find it very difficult to reach the exits. In all vessels other than capillaries, the red cells in flowing blood tend to come together in the center.

"The red blood cells sweep those particles that are less than one micron in diameter and sandwich them," she said.

Trapped among the red cells, the nanoparticles can't reach the vessel wall to treat disease in the blood vessels or the tissue beyond.

With their recent work, including a study to be published recently in Langmuir, Eniola-Adefeso's team has shown that nanoparticle spheres face this problem in tiny arterioles and venulesone step up from capillariesall the way up to centimeter-sized arteries.

They discovered this with the help of plastic channels lined with the same cells that make up the interiors of blood vessels. Human blood, with added nano- or microspheres, ran through the channels, and the team observed whether or not the spheres migrated to the channel walls and bound themselves to the lining. The researchers present the first visual evidence that few nanospheres make it to the vessel wall in blood flow.

"Prior to the work that we have done, people were operating under the assumption that particles will interact with the blood vessel at some point," Eniola-Adefeso said.

While a relatively small fraction of nanospheres filter out to the blood vessel walls, many more stay in the bloodstream and travel all over the body. Increasing the nanoparticle dose gives poor returns; after the team added five times more nanospheres to the blood samples, the number of spheres that bonded with the blood vessel lining only doubled.

"If localized drug delivery is an important goal, then nanospheres will fail," she said.

But it's not all bad news. The red blood cells tended to push microspheres with diameters of two microns or more toward the wall. Whether the blood flowed evenly, as it does in arterioles and venules, or in pulses, as occurs in arteries, the larger microspheres were able to reach the vessel wall and bind to it. When the team added more microspheres to the flow, they saw a proportional increase in microspheres on the vessel wall.

While microspheres are too large to serve as drug carriers into cell or tissue space on their own, the team suggested that microspheres could ferry nanospheres to the vessel wall, releasing them upon attachment. But the simpler approach may be nanoparticles of different shapes, which might escape the red blood cells on their own.

Eniola-Adefeso and her team are experimenting with rod-shaped nanoparticles.

"A sphere has no drift," she said, so nanospheres won't naturally move sideways out of the red cell flow. "When a rod is flowing, it drifts, and that drift moves it closer to the vessel wall."


'/>"/>

Contact: Kate McAlpine
kmca@umich.edu
734-763-4386
University of Michigan
Source:Eurekalert

Related biology news :

1. Researchers identify Achilles heel of dengue virus, target for future vaccines
2. An Achilles heel of AML
3. Scientists find Achilles heel in life-threatening malaria parasites
4. CYCLOPS genes may serve as an Achilles heel in tumor cells
5. Researchers reveal a chemo-resistant cancer stem cell as cancers Achilles heel
6. Experiment finds ulcer bugs Achilles heel
7. Achilles heel of pathogenic bacteria discovered
8. Pitt team finds Achilles Heel of key HIV replication protein
9. UNH research adds to mounting evidence against popular pavement sealcoat
10. ONR-funded research takes flight in Popular Science article
11. Medbox Safe Storage and Access Lockers Gaining Popularity
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/22/2017)... March 21, 2017   Neurotechnology , a ... technologies, today announced the release of the ... provides improved facial recognition using up to 10 ... single computer. The new version uses deep neural-network-based ... and it utilizes a Graphing Processing Unit (GPU) ...
(Date:3/20/2017)... -- At this year,s CeBIT Chancellor Dr. Angela Merkel ... Chancellor came to the DERMALOG stand together with the Japanese Prime Minster ... country. At the largest German biometrics company the two government leaders could ... recognition as well as DERMALOGĀ“s multi-biometrics system.   ... ...
(Date:3/13/2017)... Future of security: Biometric Face Matching software  Continue ... ... to match face pictures against each other or against large databases. The recognition ... ... software for biometric Face Matching on the market. The speed is at 100 ...
Breaking Biology News(10 mins):
(Date:3/24/2017)... Md. , March 24, 2017  Infectex Ltd., ... (MBVF), today announced positive results of a Phase 2b-3 ... therapy regimen in patients with multidrug-resistant pulmonary tuberculosis (MDR-TB). ... scientists at Sequella, Inc. ( USA ) ... A total of 140 patients were enrolled in ...
(Date:3/24/2017)... , March 24, 2017 Agenus Inc. ... immune checkpoint antibodies and cancer vaccines, today announced participation ... 7 th  Annual William Blair and Maidstone Life Sciences ... Alexandria Center in New York, NY ... March 29 at 9:40 am: Robert B. ...
(Date:3/23/2017)... Mass. , March 23, 2017 /PRNewswire/ ... partner to global in vitro diagnostics manufacturers ... of the industry,s first multiplexed Inherited ... disease testing by next-generation sequencing (NGS). The ... were developed with input from industry experts ...
(Date:3/23/2017)... YORK , March 23, 2017 ... ... of death, putting significant strain on health care systems, in ... cancer diagnoses rises, so too does the development of innovative ... minimum side effects. Among the many types of cancer treatments, ...
Breaking Biology Technology: