Navigation Links
ASU leads new national research network to study impacts of nanomaterials
Date:4/11/2014

TEMPE, Ariz. -- Arizona State University researchers will lead a multi-university project to aid industry in understanding and predicting the potential health and environmental risks from nanomaterials.

Nanoparticles, which are approximately 1 to 100 nanometers in size, are used in an increasing number of consumer products to provide texture, resiliency and in some cases antibacterial protection.

The U.S. Environmental Protection Agency (EPA) has awarded a grant of $5 million over the next four years to support the LCnano Network as part of the Life Cycle of Nanomaterials project, which will focus on helping to ensure the safety of nanomaterials throughout their life cycles from the manufacture to the use and disposal of the products that contain these engineered materials.

Paul Westerhoff is the LCnano Network director. Westerhoff is the associate dean of research for ASU's Ira A. Fulton Schools of Engineering and a professor in the School of Sustainable Engineering and the Built Environment.

The project will team engineers, chemists, toxicologists and social scientists from ASU, Johns Hopkins, Duke, Carnegie Mellon, Purdue, Yale, Oregon's state universities, the Colorado School of Mines and the University of Illinois-Chicago.

Engineered nanomaterials of silver, titanium, silica and carbon are among the most commonly used. They are dispersed in common liquids and food products, embedded in the polymers from which many products are made, and attached to textiles, including clothing.

Nanomaterials provide clear benefits for many products, Westerhoff says, but there remains "a big knowledge gap" about how, or if, nanomaterials are released from consumer products into the environment as they move through their life cycles, eventually ending up in soils and water systems.

"We hope to help industry make sure that the kinds of products that engineered nanomaterials enable them to create are safe for the environment," Westerhoff says.

"We will develop molecular-level fundamental theories to ensure the manufacturing processes for these products is safer," he explains, "and provide databases of measurements of the properties and behavior of nanomaterials before, during and after their use in consumer products."

Among the bigger questions the LCnano Network will investigate are whether nanomaterials can become toxic through exposure to other materials or the biological environs they come in contact with over the course of their life cycles, Westerhoff says.

The researchers will collaborate with industry both large and small companies and government laboratories to find ways of reducing such uncertainties.

Among the objectives is to provide a framework for product design and manufacturing that preserves the commercial value of the products using nanomaterials, but minimizes potentially adverse environmental and health hazards.

In pursuing that goal, the network team will also be developing technologies to better detect and predict potential nanomaterial impacts.

Beyond that, the LCnano Network also plans to increase awareness about efforts to protect public safety as engineered nanomaterials in products become more prevalent.

The grant will enable the project team to develop educational programs, including a museum exhibit about nanomaterials based on the LCnano Network project. The exhibit will be deployed through a partnership with the Arizona Science Center and researchers who have worked with the Nanoscale Informal Science Education Network.

The team also plans to make information about its research progress available on the nanotechnology industry website Nanohub.org.

"We hope to use Nanohub both as an internal virtual networking tool for the research team and as a portal to post the outcomes and products of our research for public access," Westerhoff says.

The grant will also support the participation of graduate students in the Science Outside the Lab program, which educates students on how science and engineering research can help shape public policy.


'/>"/>

Contact: Joe Kullman
joe.kullman@asu.edu
480-965-8122
Arizona State University
Source:Eurekalert

Related biology news :

1. Public exposure leads to an increase in corrections to the scientific record
2. Quest for jellyfish robot leads to discovery of bending rules for animal wing, fin tips
3. Impaired cell division leads to neuronal disorder
4. Particulate air pollution leads to increased heart attack risk
5. Discovery leads to patent for novel method of treating traumatic brain injury
6. Laying money on the line leads to healthier food choices over time
7. A wrong molecular turn leads down the path to Type 2 diabetes
8. Greek economic crisis leads to air pollution crisis
9. Microprinting leads to low-cost artificial cells
10. Rising ocean acidification leads to anxiety in fish
11. Scripps leads first global snapshot of key coral reef fishes
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/16/2016)... , Nov. 16, 2016 Sensory ... experience and security for consumer electronics, and ... financial and retail industry, today announced a global ... convenient way to authenticate users of mobile banking ... TrulySecure™ software which requires no specialized ...
(Date:11/14/2016)... Nov. 14, 2016  xG Technology, Inc. ("xG" or ... critical wireless communications for use in challenging operating environments, ... 30, 2016. Management will hold a conference call to ... p.m. Eastern Time (details below). Key Recent ... $16 million binding agreement to acquire Vislink Communication Systems. ...
(Date:6/22/2016)... June 22, 2016  The American College of Medical Genetics ... Executive Magazine as one of the fastest-growing trade shows ... at the Bellagio in Las Vegas . ... percentage of growth in each of the following categories: net ... and number of attendees. The 2015 ACMG Annual Meeting was ...
Breaking Biology News(10 mins):
(Date:11/30/2016)... CA (PRWEB) , ... November 30, 2016 , ... ... a new moving magnet Voice Coil Actuator with a flexure design that ensures ... long life with cost-effective pricing and is ideally suited where extreme precision is ...
(Date:11/30/2016)... 2016  The Allen Institute for Cell Science ... publicly available collection of gene edited, fluorescently tagged ... cellular structures with unprecedented clarity. Distributed through the ... are a crucial first step toward visualizing the ... makes human cells healthy and what goes wrong ...
(Date:11/30/2016)... 2016 Part of 5m$ Investment in ... ... Aptuit, LLC today announced that it had successfully completed the ... compounds have increased the Screening Collection to over 400,000. The ... capabilities of the company. This expansion, complemented by new robotics ...
(Date:11/30/2016)... ... November 30, 2016 , ... On 28 November 2016, the International Union of ... nihonium (Nh), moscovium (Mc), tennessine (Ts), and oganesson (Og), respectively for element 113, 115, ... proposed by the discoverers have been approved by the IUPAC Bureau. The IUPAC Council ...
Breaking Biology Technology: