Navigation Links
ASU bioengineers will expand work to solve cardiovascular health challenges
Date:6/28/2011

TEMPE, Ariz. Biomedical research at Arizona State University will be boosted with support from the American Heart Association for the work of three bioengineers.

Grants from the association were recently awarded to associate professor Brent Vernon and assistant professors David Frakes and Xiao Wang. Each is a faculty member in the School of Biological and Health Systems Engineering, one of ASU's Ira A. Fulton Schools of Engineering.

Vernon, director of the Center for Interventional Biomaterials at ASU, and Frakes are seeking to help develop new treatments for brain aneurysms through research they are conducting in partnership with the Barrow Neurological Institute at St. Joseph's Hospital and Medical Center in Phoenix.

Wang is developing mathematical modeling to predict behavior of cellular processes and engineered gene networks and their impact on cardiovascular health.

Brain aneurysms can be major factors in the onset and progression of cardiovascular diseases, including heart disease and stroke, which are among the leading causes of death in the United States.

Aneurysms form in weak spots in junctions where arteries join, causing them to balloon into pouches of tissue that fill with blood. If the pouches leak or rupture, blood spills out into surrounding tissues, which can potentially cause stroke and related serious threats to the body's vascular system.

Vernon is focusing on improving techniques to deliver therapeutic drugs to aneurysm sites to "seal them off" and prevent those dangerous leaks and ruptures.

Devices now used to treat aneurysms are made of platinum coils that cause blood to clot inside the aneurysm, cutting off further blood flow into the pouch essentially arresting growth of the aneurysm.

A drawback, Vernon explains, is that the coils tend to compact over time and a stable layer of new protective tissues doesn't consistently form over the coils. The result can be reoccurrence of blood flow into the aneurysm.

Vernon is developing a technique that will use a type of gel to deliver the medicinal drugs. That would enable the injection of liquid medicinal materials into an aneurysm site. The materials then turn into a solid material that will more thoroughly fill up the aneurysm than platinum coils, and thus better prevent reforming of canals that would let blood resume flowing into the area.

He's also looking at how to make the injected materials gradually degrade unlike the coils so that no foreign material remains in the body perpetually and threatens to eventually cause complications.

At same time, he is working on enabling this method of treatment to also release a protein that will enhance and accelerate the growth of healthy protective tissue over aneurysms.

Post-doctoral bioengineering student Celeste Riley is assisting Vernon in the research.

Frakes also will work on methods to keep fluids from continuing to flow into aneurysms and cause potentially fatal ruptures. He'll develop experiments and simulations to study the effectiveness of applying various engineering techniques to predicting and controlling fluid dynamics (the behavior of fluids) in such preventative clinical treatments.

He expects the results to offer improved physical and computational models and methods for simulating fluid dynamics in treated brain aneurysms, as well as improved methods for measuring fluid behavior experimentally in treated physical cerebral aneurysm models.

His work will also provide improved computational models for new devices being developed to treat aneurysms.

Frakes will be assisted in the project by bioengineering doctoral students Priya Nair and Hiathem Babiker.

Vernon's research progress has drawn support from previous American Heart Association grants. Frakes' work has also attracted support from the Brain Aneurysm Foundation and the ASU Women in Philanthropy Society.

Wang describes his project as "mathematics applied to a biological problem." His work involves study of the mechanisms of cell differentiation the process by which cells develop to perform more specialized functions and its impact as a factor in cardiovascular disease.

He also is exploring approaches to engineering gene networks and determining how they perform in treatments for cardiovascular ailments.

Mathematical modeling he will apply to studies in both areas will provide precise looks at the fundamental principles guiding cell and gene network behavior. Such models will help provide formulas for predicting the effectiveness of clinical treatment methods under varying conditions.

Wang will be assisted by bioengineering doctoral student Benjamin Albiston.

The grants to Vernon, Frakes and Wang each provide more than $130,000 over two years.

The knowledge gained from their research will be incorporated into undergraduate and graduate courses, as well as student research projects.


'/>"/>

Contact: Joe Kullman
joe.kullman@asu.edu
480-965-8122
Arizona State University
Source:Eurekalert

Related biology news :

1. UCLA bioengineers discover how particles self-assemble in flowing fluids
2. Bioengineers provide adult stem cells with simultaneous chemical, electrical and mechanical cues
3. Penn bioengineers create simulator to test blood platelets in virtual heart attacks
4. Bioengineers succeed in producing plastic without the use of fossil fuels
5. New method developed by UC San Diego bioengineers gives regenerative medicine a boost
6. UC San Diego bioengineers fill holes in science of cellular self-organization
7. WSU study expands time window for facial nerve rehabilitation
8. HHMI helps summer institute expand to regional sites
9. Search for weapons of mass destruction expands to East Africa
10. New studies provide beneficial insights expanding the pool of liver grafts and transplants
11. New research expands genetic base of cultivated strawberry
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/23/2016)... Massachusetts , March 23, 2016 /PRNewswire/ ... im Interesse erhöhter Sicherheit Gesichts- und Stimmerkennung ... Xura, Inc. (NASDAQ: MESG ), ... bekannt, dass das Unternehmen mit SpeechPro zusammenarbeitet, ... aus der Finanzdienstleistungsbranche, wird die Möglichkeit angeboten, ...
(Date:3/22/2016)... Ontario , PROVO and ... Newborn Screening Ontario (NSO), which operates the ... for molecular testing, and Tute Genomics and UNIConnect, ... management technology respectively, today announced the launch of a ... next-generation sequencing (NGS) testing panel. NSO ...
(Date:3/18/2016)... 2016 --> --> ... Manned & Unmanned Vehicles, Physical infrastructure and Perimeter Surveillance & ... the border security market and the continuing migration crisis in ... Europe has led visiongain to publish this unique ... --> defence & security companies in the border ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... /PRNewswire/ - FACIT has announced the creation of ... company, Propellon Therapeutics Inc. ("Propellon" or "the Company"), ... portfolio of first-in-class WDR5 inhibitors for the treatment ... represent an exciting class of therapies, possessing the ... cancer patients. Substantial advances have been achieved with ...
(Date:6/23/2016)... 23, 2016  The Biodesign Challenge (BDC), a university ... to harness living systems and biotechnology, announced its winning ... New York City . ... showcased projects at MoMA,s Celeste Bartos Theater during the ... MoMA,s senior curator of architecture and design, and ...
(Date:6/23/2016)... 23, 2016 Apellis Pharmaceuticals, Inc. today ... trials of its complement C3 inhibitor, APL-2. The ... ascending dose studies designed to assess the safety, ... injection in healthy adult volunteers. Forty ... a single dose (ranging from 45 to 1,440mg) ...
(Date:6/23/2016)... Pleasant Prairie, WI (PRWEB) , ... June 23, ... ... sciences consultancy focused on quality, regulatory and technical consulting, provides a free ... webinar is presented on July 13, 2016 at 12pm CT at no charge. ...
Breaking Biology Technology: