Navigation Links
AACR news: K9 osteosarcoma samples identify drivers of metastasis in pediatric bone cancer
Date:4/9/2013

Human osteosarcoma samples are hard to come by, making the disease difficult to study. However, K9 bone cancer is genetically indistinguishable from the human form of the disease, and over 10,000 canine patients develop the disease every year. Research from the University of Colorado Cancer Center and the Colorado State University Flint Animal Cancer Center presented at the AACR Annual Meeting 2013 used easily available K9 osteosarcoma samples to discover a novel protein that governs metastasis and chemoresistance in pediatric osteosarcoma.

"We have a pediatric osteosarcoma survival rate of 75 percent. But if the disease has already metastasized at the time of diagnosis, the survival rate is only 20 percent. This study takes an important step toward stopping this metastasis and treating the most dangerous form of the disease," says Dawn Duval, PhD, investigator at the CU Cancer Center and assistant professor of molecular oncology at Colorado State University.

Duval and colleagues assessed the gene expression signatures of K9 osteosarcoma samples, comparing cancers that had shown especially long and especially short periods of disease-free progression after the common treatment of amputation and chemotherapy the theory being that differences in these genetic profiles would mark the difference between metastasic and non-metastatic cancers. The gene most different between more and less aggressive K9 osteosarcomas was the gene that makes IGF2 mRNA binding protein (called IGF2BP1) a molecule necessary during fetal development that should go quiet after birth, but whose expression had been restarted in these aggressive cancers.

"Right away, both the over-expression of this protein and its known function made it a strong candidate driver for osteosarcoma metastasis, but we wanted to validate its function in human samples and in mouse models," Duval says.

To do so, the group analyzed IGF2BP1 expression in five available human osteosarcoma cell lines, finding an average 14-fold increase in expression compared to samples of healthy bone. Specifically, the group found that mRNA and protein expression linked to the influence of IGF2BP1 was highest in the most metastatic of these five human cell lines.

When Duval knocked down the expression of IGF2BP1, she found a three-fold decrease in the proliferation of these cells and increased sensitivity to chemotherapy with doxorubicin. The same technique produced similar results in mouse models of the disease without IGF2BP1, mouse models developed fewer, smaller tumors.

"It's an exciting finding and one with important clinical potential," Duval says.

Though further work is needed to validate IGF2BP1 as a marker and target for controlling the metastasis of pediatric bone cancer, and to identify clinically appropriate ways of targeting the molecule or its gene expression pathway, Duval is optimistic that this first step will result in improved care for the pediatric osteosarcoma patients who remain at the highest risk.


'/>"/>

Contact: Garth Sundem
garth.sundem@ucdenver.edu
805-559-2023
University of Colorado Denver
Source:Eurekalert

Related biology news :

1. Good news: Fewer maternal and child deaths
2. REACH news: European ombudsman takes up PETA complaint
3. AACR news: Paragazole excels in preclinical models of triple-negative breast cancer
4. AACR news: Six2 homeoprotein allows breast cancer cells to detach and metastasize
5. AACR news: Little molecule makes big difference in bladder cancer metastasis
6. AACR news: New target plus new drug equals death of melanoma cells
7. Medbox Developing a Patent Pending Wall-Mounted Biometric Kiosk for Storage of Sensitive Medicine Samples and Supplies for Doctors Offices.
8. BGI Tech develops whole exome sequencing analysis of FFPE DNA samples to boost biomedicine
9. NSF-funded team samples Antarctic lake beneath the ice sheet
10. UT Arlington engineer wins NSF award to support microfluidic analyses of tissue, cell samples
11. Beyond the microscope: Identifying specific cancers using molecular analysis
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... 5, 2017 Today HYPR Corp. , ... server component of the HYPR platform is officially ... end-to-end security architecture that empowers biometric authentication across Fortune ... already secured over 15 million users across the financial ... connected home product suites and physical access represent a ...
(Date:4/4/2017)... NEW YORK , April 4, 2017   ... solutions, today announced that the United States Patent and ... The patent broadly covers the linking of an iris ... the same transaction) and represents the company,s 45 th ... our latest patent is very timely given the multi-modal ...
(Date:3/30/2017)... , March 30, 2017  On April 6-7, 2017, ... the Genome hackathon at Microsoft,s headquarters in ... competition will focus on developing health and wellness apps ... Hack the Genome is the first hackathon ... The world,s largest companies in the genomics, tech and ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... Proscia Inc ., ... a Webinar titled, “Pathology is going digital. Is your lab ready?” with Dr. ... best practices and how Proscia improves lab economics and realizes an increase in ...
(Date:10/11/2017)... ... October 11, 2017 , ... ... granted orphan drug designation to SBT-100, its novel anti-STAT3 (Signal Transducer and Activator ... osteosarcoma. SBT-100 is able to cross the cell membrane and bind intracellular STAT3 ...
(Date:10/10/2017)... , Oct. 10, 2017 International research firm Parks Associates ... will speak at the TMA 2017 Annual Meeting , October 11 ... in the residential home security market and how smart safety and security ... Parks Associates: ... "The residential security ...
(Date:10/9/2017)... ... 2017 , ... The award-winning American Farmer television series will feature 3 Bar ... Tuesdays at 8:30aET on RFD-TV. , With global population estimates nearing ten billion ... continue to feed a growing nation. At the same time, many of our valuable ...
Breaking Biology Technology: