Navigation Links
A tree's response to environmental changes: What can we expect over the next 100 years?
Date:10/9/2009

The many environmental issues facing our society are prevalent in the media lately. Global warming, rainforest devastation, and endangered species have taken center stage. Our ecosystem is composed of a very delicate network of interactions among all species and the non-living environment. Predicting how each component of this complex system will respond to the many environmental changes sweeping the globe is a challenging problem today's scientists face.

A recent article by Dr. Abraham Miller-Rushing and his colleagues at Boston University published in the October issue of the American Journal of Botany (http://www.amjbot.org/cgi/content/full/96/10/1779) explores how increasing concentrations of atmospheric carbon dioxide (CO2) may be affecting trees and, ultimately, affecting water and carbon cycles.

It is known that increasing concentrations of atmospheric CO2 affect the physiology and behavior of many organisms, and in plants, changes to the pores (stomata) on the surface of leaves are one example of these effects. Stomata allow air (containing CO2) to pass into the leaf while water vapor passes out of the leaf. Plants use carbon dioxide to produce sugars during the process of photosynthesis. With increasing concentrations of atmospheric CO2, stomatal density decreases while rates of photosynthesis increase. The decrease in stomatal density results in decreased water loss through the leaves.

"These changes in stomatal behavior and water use efficiency can, in turn, have large impacts on plants and can alter ecosystem-scale water and carbon cycling," Miller-Rushing said. "For example, soil moisture, runoff, and river flows might increase and drought tolerance in individual plants might improve."

The relationship between atmospheric CO2 concentrations and stomatal density is so constant over the long term that scientists are able to use stomatal density of fossilized leaves to determine historical atmospheric CO2 concentrations. However, short-term responses to changes in CO2 concentrations have previously been found to be much more variable, and very little concrete data exist on how long-lived organisms respond to changing CO2 concentrations. "We currently do not know how the anatomy and water relations of individual trees will respond to changes in climate and atmospheric concentrations of CO2 over their lifetimes," Miller-Rushing said. "Understanding these responses will be key to predicting how forests might contribute to changes in carbon and water cycles over the next 100 years."

Miller-Rushing and his colleagues examined the stomatal density on leaves, the length of the cells that surround the stomata (called guard cells), and the leaves' efficiency of water use (a measurement that compares the amount of carbon that is converted to sugar with the amount that passes through the stomata) in 27 trees growing at the Arnold Arboretum in Boston, Massachusetts for the past century. By examining several dried specimens from each plant that had been collected over the past hundred years, they were able to assess these characteristics in a temporal framework. During this period, global atmospheric CO2 concentrations increased by approximately 29%. Miller-Rushing and colleagues found that stomatal density declined while guard cell length increased in oaks and hornbeams, although these changes were not dependent on the magnitude of changes in CO2 concentrations. Intrinsic water use efficiency did not change significantly over time, suggesting that it may not respond to changes in CO2 concentrations over the lifetimes of individual trees, possibly because of compensating changes in stomatal density and guard cell size.

"This finding may have important implications for models that predict changes in future climate, carbon, and water cycles," Miller-Rushing stated. "We also demonstrated a new method that will allow researchers to investigate these questions in greater depth, namely by using herbarium specimens sampled repeatedly from the same trees, as is often done at botanical gardens."

As understanding the rippling impacts caused by various changes to the environment becomes increasingly more important, proper methodology to address these questions has become essential.


'/>"/>

Contact: Richard Hund
rhund@botany.org
314-577-9557
American Journal of Botany
Source:Eurekalert

Related biology news :

1. As ash borer claims more trees, researcher at ISU works for species survival
2. Electrical circuit runs entirely off power in trees
3. Large trees declining in Yosemite
4. New discovery suggests trees evolved camouflage defense against long extinct predator
5. Tires made from trees -- better, cheaper, more fuel efficient
6. Ferns took to the trees and thrived
7. When palm trees gave way to spruce trees
8. Australias climate: Drought and flooding in annual rings of tropical trees
9. Plastic that grows on trees, part two
10. Study finds hemlock trees dying rapidly, affecting forest carbon cycle
11. California study shows shade trees reduce summertime electricity use
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/20/2016)... , June 20, 2016 Securus Technologies, ... technology solutions for public safety, investigation, corrections and ... prisons involved, it has secured the final acceptance ... facilities for Managed Access Systems (MAS) installed. Furthermore, ... facilities to be installed by October, 2016. MAS ...
(Date:6/9/2016)... 2016 Paris Police Prefecture ... security solution to ensure the safety of people and operations ... the major tournament Teleste, an international technology group ... announced today that its video security solution will be utilised ... up public safety across the country. The system roll-out is ...
(Date:6/2/2016)... 2, 2016   The Weather Company , an IBM ... an industry-first capability in which consumers will be able to ... ask questions via voice or text and receive relevant information ... Marketers have long sought an advertising solution that ... be personal, relevant and valuable; and can scale across millions ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 27, 2016  Global demand for enzymes is ... 2020 to $7.2 billion.  This market includes enzymes ... products, biofuel production, animal feed, and other markets) ... biocatalysts). Food and beverages will remain the largest ... consumption of products containing enzymes in developing regions.  ...
(Date:6/27/2016)... (PRWEB) , ... June 27, 2016 , ... ... to bring innovative medical technologies, services and solutions to the healthcare market. The ... implementation of various distribution, manufacturing, sales and marketing strategies that are necessary to ...
(Date:6/24/2016)... DIEGO , June 24, 2016 ... more sensitively detects cancers susceptible to PARP inhibitors ... circulating tumor cells (CTCs). The new test has ... HRD-targeted therapeutics in multiple cancer types. ... targeting DNA damage response pathways, including PARP, ATM, ...
(Date:6/23/2016)... CAMBRIDGE, Mass. , June 23, 2016 /PRNewswire/ ... the development of novel compounds designed to target ... compound, napabucasin, has been granted Orphan Drug Designation ... in the treatment of gastric cancer, including gastroesophageal ... cancer stemness inhibitor designed to inhibit cancer stemness ...
Breaking Biology Technology: