Navigation Links
A step toward tissue-engineered heart structures for children
Date:9/12/2007

Infants and children receiving artificial heart-valve replacements face several repeat operations as they grow, since the since the replacements become too small and must be traded for bigger ones. Researchers at Childrens Hospital Boston have now developed a solution: living, growing valves created in the lab from a patients own cells.

In a special issue of Circulation published September 11, they describe making pulmonary valves through tissue engineering. These valves, which provide one-way blood flow from the hearts right ventricle into the pulmonary artery, are often malformed in congenital heart disease, putting an extra burden on the heart.

The heart valve is a complex organ, says Virna Sales, MD, a researcher in Childrens Department of Cardiac Surgery and the studys first author. It must open and close synchronously, withstand pressure, and be pliable and elastic. We are one of the few labs in the U.S. thats attempting to make heart valves through tissue engineering. We hope these could just be implanted in a child just once, instead of the many heart operations most children have to go through as they get older.

The researchers, led by Sales and senior investigator John Mayer, MD in Childrens Department of Cardiac Surgery, first isolated endothelial progenitor cells (precursors of the cells that line blood vessel walls) from the blood of laboratory animals. They then seeded the cells onto tiny, valve-shaped biodegradable molds and pre-coated with proteins found in the natural matrix that surrounds and supports cells.

Experimenting with different matrix proteins and growth factors, they were able to make pulmonary valve leaflets that had the right mechanical properties sturdy yet pliable. Tests showed the original cells had differentiated to form both endothelial cells and smooth-muscle-like cells and added to the surrounding matrix to hold them together.

With grants from the American Heart Association and the Cambridge, Mass.-based Center for Integration of Medicine and Innovative Technology (CIMIT), Sales is now refining the lab-grown valves by exposing them to mechanical stress in a bioreactor. She is also using a cardiac jelly a cushiony material rich in matrix components and growth factors to encourage cells to differentiate and form a heart valve on their own, with only minimal reliance on an artificial scaffold. I would like to mimic what really happens in the embryo what Mother Nature does, she says. The next step would be to implant the living valves into animals.

Sales and surgical research fellow Bret Mettler, MD, have already used tiny tissue-engineered patches in sheep to rebuild a portion of the pulmonary artery an area that often needs augmentation in patients with congenital heart disease. Eventually, Sales hopes to use tissue-engineering techniques to create living stents for adults with atherosclerosis.


'/>"/>

Contact: Anna Gonski
anna.gonski@childrens.harvard.edu
617-355-6420
Children's Hospital Boston
Source:Eurekalert

Related biology news :

1. Towards precise classification of cancers based on robust gene functional expression profiles
2. Unchecked DNA replication drives earliest steps toward cancer
3. Virologists make major step towards understanding the process of HIV infection
4. Moffitt-USF head toward first human trials of anti-cancer drug that targets protein AKT
5. Cats indifference towards sugar explained
6. A step toward the $1,000 personal genome using readily available lab equipment
7. Survey Uncovers Surprising Attitudes Towards HIV Vaccine Research
8. A new step towards an AIDS vaccine
9. New GM mosquito sexing technique is step towards malaria control, report scientists
10. Novel method reveals how menthol discovery could point towards new or improved pain therapies
11. Scientists make first step towards holy grail of crystallography
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/22/2016)... On Monday, the Department of Homeland Security ... solutions for the Biometric Exit Program. The Request for ... (CBP), explains that CBP intends to add biometrics to ... United States , in order to deter visa ... Logo - http://photos.prnewswire.com/prnh/20160622/382209LOGO ...
(Date:6/20/2016)... -- Securus Technologies, a leading provider of civil ... investigation, corrections and monitoring announced that after exhaustive ... the final acceptance by all three (3) Department ... (MAS) installed. Furthermore, Securus will have contracts for ... October, 2016. MAS distinguishes between legitimate wireless device ...
(Date:6/15/2016)... New York , June 15, 2016 /PRNewswire/ ... a new market report titled "Gesture Recognition Market by ... and Forecast, 2016 - 2024". According to the report, ... USD 11.60 billion in 2015 and is estimated ... reach USD 48.56 billion by 2024.  ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... 27, 2016 , ... Newly created 4Sight Medical Solutions ... the healthcare market. The company's primary focus is on new product introductions, to ... that are necessary to help companies efficiently bring their products to market. , ...
(Date:6/24/2016)... SAN DIEGO , June 24, 2016 /PRNewswire/ ... that more sensitively detects cancers susceptible to PARP ... individual circulating tumor cells (CTCs). The new test ... of HRD-targeted therapeutics in multiple cancer types. ... therapies targeting DNA damage response pathways, including PARP, ...
(Date:6/23/2016)... CAMBRIDGE, Mass. , June 23, 2016 /PRNewswire/ ... the development of novel compounds designed to target ... compound, napabucasin, has been granted Orphan Drug Designation ... in the treatment of gastric cancer, including gastroesophageal ... cancer stemness inhibitor designed to inhibit cancer stemness ...
(Date:6/23/2016)... 2016  The Prostate Cancer Foundation (PCF) is pleased to announce ... cures for prostate cancer. Members of the Class of 2016 were selected from ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
Breaking Biology Technology: