Navigation Links
A step toward better brain implants using conducting polymer nanotubes
Date:9/29/2009

ANN ARBOR, Mich.---Brain implants that can more clearly record signals from surrounding neurons in rats have been created at the University of Michigan. The findings could eventually lead to more effective treatment of neurological disorders such as Parkinson's disease and paralysis.

Neural electrodes must work for time periods ranging from hours to years. When the electrodes are implanted, the brain first reacts to the acute injury with an inflammatory response. Then the brain settles into a wound-healing, or chronic, response.

It's during this secondary response that brain tissue starts to encapsulate the electrode, cutting it off from communication with surrounding neurons.

The new brain implants developed at U-M are coated with nanotubes made of poly(3,4-ethylenedioxythiophene) (PEDOT), a biocompatible and electrically conductive polymer that has been shown to record neural signals better than conventional metal electrodes.

U-M researchers found that PEDOT nanotubes enhanced high-quality unit activity (signal-to-noise ratio >4) about 30 percent more than the uncoated sites. They also found that based on in vivo impedance data, PEDOT nanotubes might be used as a novel method for biosensing to indicate the transition between acute and chronic responses in brain tissue.

The results are featured in the cover article of the Oct. 5 issue of the journal Advanced Materials. The paper is titled, "Interfacing Conducting Polymer Nanotubes with the Central Nervous System: Chronic Neural Recording using Poly(3-4-ethylenedioxythiophene) Nanotubes."

"Microelectrodes implanted in the brain are increasingly being used to treat neurological disorders," said Mohammad Reza Abidian, a post-doctoral researcher working with Professor Daryl Kipke in the Neural Engineering Laboratory at the U-M Department of Biomedical Engineering.

"Moreover, these electrodes enable neuroprosthetic devices, which hold the promise to return functionality to individuals with spinal cord injuries and neurodegenerative diseases. However, robust and reliable chronic application of neural electrodes remains a challenge."

In the experiment, the researchers implanted two neural microelectrodes in the brains of three rats. PEDOT nanotubes were fabricated on the surface of every other recording site by using a nanofiber templating method. Over the course of seven weeks, researchers monitored the electrical impedance of the recording sites and measured the quality of recording signals.

PEDOT nanotubes in the coating enable the electrodes to operate with less electrical resistance than current metal electrode sites, which means they can communicate more clearly with individual neurons.

"Conducting polymers are biocompatible and have both electronic and ionic conductivity," Abidian said. "Therefore, these materials are good candidates for biomedical applications such as neural interfaces, biosensors and drug delivery systems."

In the experiments, the Michigan researchers applied PEDOT nanotubes to microelectrodes provided by the U-M Center for Neural Communication Technology. The PEDOT nanotube coatings were developed in the laboratory of David C. Martin, now an adjunct professor of materials science and engineering, macromolecular science and engineering, and biomedical engineering. Martin is currently the Karl W. Ber Professor and Chair of the Materials Science and Engineering Department at the University of Delaware.

Martin is also co-founder and chief scientific officer for Biotectix, a U-M spinoff company located in Ann Arbor. The company is working to commercialize conducting polymer-based coatings for a variety of biomedical devices

In previous experiments, Abidian and his colleagues have shown that PEDOT nanotubes could carry with them drugs to prevent encapsulation.

"This study paves the way for smart recording electrodes that can deliver drugs to alleviate the immune response of encapsulation," Abidian said.


'/>"/>

Contact: Byron Roberts
byronr@umich.edu
734-647-7085
University of Michigan
Source:Eurekalert  

Related biology news :

1. Toward a nanomedicine for brain cancer
2. Rats move toward the food but do not eat
3. Scientists take early steps toward mapping epigenetic variability
4. Toward an explanation for Crohns disease?
5. Gene expression findings a step toward better classification and treatment of juvenile arthritis
6. Toward cheap underwater sensor nets
7. Activated stem cells in damaged lungs could be first step toward cancer
8. Progress toward artificial tissue?
9. Toward a systems biology map of iron metabolism
10. Towards a natural pacemaker
11. Optimum running speed is stride toward understanding human body form
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
A step toward better brain implants using conducting polymer nanotubes
(Date:3/23/2017)... Mar. 23, 2017 Research and Markets has ... Analysis & Trends - Industry Forecast to 2025" report to ... ... a CAGR of around 8.8% over the next decade to reach ... analyzes the market estimates and forecasts for all the given segments ...
(Date:3/20/2017)... HANOVER, Germany , March 20, 2017 At ... Hamburg -based biometrics manufacturer DERMALOG. The Chancellor came to the ... Japan is this year,s CeBIT partner country. At the largest ... important biometrics in use: fingerprint, face and iris recognition as well as ... ...
(Date:3/9/2017)... Australia , March 9, 2017 ... the prestigious World Lung Imaging Workshop at the University ... , was invited to deliver the latest data to ... globally recognised event brings together leaders at the forefront ... developments in lung imaging. "The quality ...
Breaking Biology News(10 mins):
(Date:3/28/2017)... ... March 28, 2017 , ... ... fully-certified hygienic SWB805 MultiMountTM weigh modules. These weigh modules are designed according ... National Sanitation Foundation (NSF). , As fully integrated weighing solutions, SWB805 MultiMount ...
(Date:3/27/2017)... Roka Bioscience, Inc. (NASDAQ: ROKA), a molecular diagnostics ... of foodborne pathogens,  today announced that Mary Duseau , ... Convention on March 29 at 9:50am ET. The conference will ... About Roka Bioscience ... Roka Bioscience is a molecular diagnostics ...
(Date:3/27/2017)... Infectex Ltd., a Russian portfolio company of Maxwell Biotech Venture Fund (MBVF), today ... standard drug therapy regimen in patients with multidrug-resistant pulmonary tuberculosis (MDR-TB). SQ109 is a ... ) and the US National Institutes of Health. Continue ... ... ...
(Date:3/27/2017)... ... March 27, 2017 , ... PMG Research is pleased to announce ... by The Conference Forum in Boston on April 3-4, 2017. The CTC conference focuses ... trial outcomes and bring them closer to the patient. Clinical Trial Collaborations also will ...
Breaking Biology Technology: