Navigation Links
A screening strategy using zebrafish targets genes that protect against hearing loss
Date:2/29/2008

A small striped fish is helping scientists understand what makes people susceptible to a common form of hearing loss, although, in this case, its not the fishs ears that are of interest. In a study published on February 29 in the open-access journal PLoS Genetics, researchers at the University of Washington have developed a research method that relies on a zebrafishs lateral linethe faint line running down each side of a fish that enables it to sense its surroundingsto quickly screen for genes and chemical compounds that protect against hearing loss from some medications. The study was funded in part by the National Institute on Deafness and Other Communication Disorders (NIDCD), one of the National Institutes of Health.

The fishs lateral line contains sensory cells that are functionally similar to those found in the inner ear, except these are on the surface of the fishs body, making them more easily accessible, said James F. Battey, Jr., M.D., Ph.D., director of the NIDCD. This means that scientists can very efficiently analyze the sensory structures under different conditions to find out what is likely to cause damage to these structures and, conversely, what can protect them from damage.

When people are exposed to some antibiotics and chemotherapy agents, the sensory structures in the inner ear, called hair cells, can be irreversibly damaged, resulting in hearing loss and balance problems. These are known as ototoxic medications. People vary widely in their susceptibility to these agents as well as to damage caused by other chemical agents, loud sounds and aging.

To find out why this is so, senior scientists Edwin Rubel, David Raible, and their research team developed a screening strategy that uses hair cells in the lateral line of zebrafish larvae to signal how hair cells in a persons inner ear might respond under similar conditions. Hair cells are named for small bristly extensions, or stereocilia, jutting from their tops. Movement of fluid (triggered by sound vibrations in the inner ear or changes in water pressure in the fishs environment) causes the stereocilia to tilt to one side, generating an electrical impulse that travels to the brain.

The researchers first set out to identify genes that may be involved in how hair cells respond to ototoxic medicines. Using a chemical that causes random mutations in zebrafish, the researchers bred various fish families, with each family exhibiting a different set of mutations. The researchers then exposed five-day-old larval offspring to the drug neomycin, a type of antibiotic that damages these hair cells as well as those in the human inner ear. The larvae were then stained to determine if the hair cells were still intact. Fish that were resistant to damage were quickly identified as were those that were especially vulnerable.

Using genetic techniques, the group then examined the larvaes DNA, searching for segments that were closely tied to the desired property. In doing so, they zoomed in on five mutationseach located on different genesthat, when inherited from each parent, protected against hair cell damage. Further examination revealed that one of the identified genes corresponds to a gene that is also found in other vertebrates, including humans. Another five mutations were identified that offer protection under more complex genetic conditions.

Next, the team investigated whether they could identify chemical compounds that protect hair cells against ototoxic medicines. Using the same screening techniqueexposing five-day-old zebrafish larvae to neomycin and later applying special stains to the hair cellsthe researchers screened more than 10,000 compounds and narrowed them down to two similar chemicals that provide robust protection of hair cells against the neomycin. One of the compounds was later found to protect hair cells from a mouses inner ear against the drug, indicating that the same compound may be protective for other mammals as well.

One of the pluses about working with zebrafish is that, like other fish, they produce hundreds of offspring. We can look at lots of animals and we can look at many hair cells per animal, which means that we can get good quantitative data, said Dr. Raible.

The authors suggest that their research technique, which combines chemical screening with traditional genetic approaches, offers a fast and efficient way to identify potential drugs and drug targets that may one day provide therapies for people with hearing loss and balance disorders.


'/>"/>

Contact: Mary Kohut
Press@plos.org
415-568-3457
Public Library of Science
Source:Eurekalert

Related biology news :

1. UNC study questions FDA genetic-screening guidelines for cancer drug
2. MIT: Micro livers could aid drug screening
3. New screening strategy for detection of chagas disease in children
4. Simple screening questionnaire for kidney disease outperforms current clinical practice guidelines
5. Embryonic stem cell strategy advanced with UCSF finding
6. Penn Veterinary Medicine report new strategy to create genetically-modified animals
7. Bee strategy helps servers run more sweetly
8. Lupus Research Institute strategy delivers $30 million in national funding
9. Texas Hospital nations first to use large-scale cocoon strategy against whooping cough
10. Carbon capture strategy could lead to emission-free cars
11. Strategy for nanotechnology-related environmental, health and safety research
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/19/2017)... Jan. 19, 2017 Sensory Inc ... and security for consumer electronics, and i ... systems and cybersecurity solutions, today announced a global ... financial institutions worldwide to bolster security of data ... secure user authentication platforms they offer, innerCore now ...
(Date:1/18/2017)... 2017 MedNet Solutions , an ... entire spectrum of clinical research, is proud to ... for the organization in terms of corporate growth, ... products and services. The company,s exceptional achievements can ... iMedNet ™ – ...
(Date:1/12/2017)... , Jan. 12, 2017  Trovagene, Inc. (NASDAQ: ... (ctDNA) technologies, today announced that it has signed agreements ... and the Middle East ... milestone marks the first wave of international distribution agreements ... and blood samples. The initial partners will ...
Breaking Biology News(10 mins):
(Date:1/19/2017)... Research and Markets has announced the addition ... Type, Application - Global Opportunity Analysis and Industry Forecast, 2014-2022" ... ... is projected to reach $15,737 million by 2022 from $6,521 in ... Omic technologies segment accounted for more than half ...
(Date:1/19/2017)... and HOUSTON , Jan. 19, ... today announced the formation of its Medical/Clinical Advisory ... and industry veterans who enhance the range and ... accelerates development of its novel prenatal diagnostic tests.  ... clinical and strategic guidance for the company,s product ...
(Date:1/19/2017)... DUBLIN , Jan 19, 2017 Research and ... has announced the addition ... - Material, Application - Forecast to 2025" report to ... The report provides a detailed analysis on current ... Market forecasts till 2025, using estimated market values as the base numbers ...
(Date:1/19/2017)... , ... January 19, 2017 , ... ... product vigilance software to leading biopharmaceutical and medical device manufacturers and regulators, is ... fully 21 CFR Part 11-compliant email client designed to provide product vigilance departments ...
Breaking Biology Technology: