Navigation Links
A role of glucose tolerance could make the adaptor protein p66Shc a new target for cancer and diabetes
Date:2/13/2014

[TORONTO,Canada, Feb 18, 2014] A protein that has been known until recently as part of a complex communications network within the cell also plays a direct role in regulating sugar metabolism, according to a new study published on-line in the journal Science Signaling (February 18, 2014).

Cell growth and metabolism are tightly controlled processes in our cells. When these functions are disturbed, diseases such as cancer and diabetes occur. Mohamed Soliman, a PhD candidate at the Lunenfeld Tanenbaum Research Institute at Mount Sinai Hospital, found a unique role for the p66Shc adaptor protein in regulating glucose metabolism and cell growth. This report could lay the foundation for future studies to target adaptor proteins in cancer and diabetes therapy.

Proteins are functional units of cells that assemble in a precise manner to control cellular processes. Specifically, adapter proteins act as linkers or switches to fine tune cellular functions. Soliman and colleagues became interested in p66Shc adaptor protein after reading that mice deficient in it have a greatly increased lifespan and show no signs of cancer. p66Shc mice also have better glucose tolerance and are resistance to the development of obesity and diabetes. These findings prompted Soliman to take novel approaches to elucidate the mechanism to explain these findings. Briefly, Soliman explains "we found when silencing the adaptor p66Shc in cells, enhances not only glucose metabolism, but also the metabolism of and molecules involved in the making the cells building blocks, resulting in overall increased cell growth."

Thus, p66Shc may have evolved to be a switch that responds to nutrient availability. This role of p66Shc as a sensor of energy levels appears to be unique to higher level organisms explains Soliman's mentor Dr. Jim Dennis "the gene responsible for p66Shc protein expression is relatively new by evolution standards, as it is not seen in species other than vertebrates". Simply stated p66Shc acts to suppress insulin signaling and energy metabolism when glucose levels are high, as in the case of diabetes.

Mohamed Soliman is a Vanier scholar and was mentored by the late Dr. Tony Pawson whose research is credited for pioneering the field of signal transduction by first describing in the 1980's that proteins contain modular domains that allow them to interact with each other to control cellular communication. He is currently working in the laboratory of Dr. Jim Dennis, Senior Investigator at the Lunenfeld-Tanenbaum Research Institute, and a professor at the University of Toronto. This study has been done in collaboration with Dr. David Sabatini at the Massachusetts Institute of Technology.


'/>"/>

Contact: Mohamed Soliman
ma.soliman@utoronto.ca
Lunenefeld-Tanenbaum Research Institute
Source:Eurekalert  

Related biology news :

1. New study finds no reason to replace fructose with glucose
2. Glucose: Potential new target for combating annual seasonal influenza
3. Study: Metformin for breast cancer less effective at higher glucose concentrations
4. People with impaired glucose tolerance can show cognitive dysfunction
5. Lift weights to lower blood sugar? White muscle helps keep blood glucose levels under control
6. FASEB SRC announces conference: Glucose transport -- Gateway for Metabolic Systems Biology
7. Anchoring proteins influence glucose metabolism and insulin release
8. Engineers use droplet microfluidics to create glucose-sensing microbeads
9. New, designer fiber may help address fiber intolerance and ease IBS symptoms
10. Overexpression of cytoglobin gene increases neuronal hypoxic tolerance
11. Early exposure to insecticides gives amphibians higher tolerance later
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
A role of glucose tolerance could make the adaptor protein p66Shc a new target for cancer and diabetes
(Date:4/5/2017)... 2017 Today HYPR Corp. , leading ... component of the HYPR platform is officially FIDO® ... security architecture that empowers biometric authentication across Fortune 500 ... secured over 15 million users across the financial services ... home product suites and physical access represent a growing ...
(Date:3/30/2017)... , March 30, 2017 The research team ... for three-dimensional (3D) fingerprint identification by adopting ground breaking 3D fingerprint ... new realm of speed and accuracy for use in identification, crime ... affordable cost. ... A ...
(Date:3/24/2017)... , March 24, 2017 The Controller General of ... Mr. Abdulla Algeen have received the prestigious international IAIR Award ... Continue Reading ... ... and Deputy Controller Abdulla Algeen (small picture on the right) have received ...
Breaking Biology News(10 mins):
(Date:5/23/2017)... ... May 23, 2017 , ... ... of human cardiovascular cells for research and the development of cardiac regeneration ... to generate large numbers of cardiomyocytes (hPSC-CMs). Due to varying differentiation efficiencies, ...
(Date:5/23/2017)... ... May 23, 2017 , ... Vortex Biosciences , ... “Label-free isolation of prostate circulating tumor cells using Vortex microfluidic technology ” in Nature ... a collaboration with Dr. Dino Di Carlo and Dr. Matthew Rettig at the University ...
(Date:5/23/2017)... ... May 23, 2017 , ... Cambridge Semantics , the ... this year’s Bio-IT World Conference and Expo in Boston May 23-25 with ... solution. The Anzo Smart Data Lake is also a finalist for the Best ...
(Date:5/22/2017)... ... 22, 2017 , ... Cancer diagnostics and pathology workflow solution ... the Association for Pathology Informatics Annual Summit at the Wyndham Grand ... Cancer Diagnostic Cockpit and Consultation Portal, Inspirata will present research it led to ...
Breaking Biology Technology: