Navigation Links
A region and pathway found crucial for facial development in vertebrate embryos
Date:7/17/2014

CAMBRIDGE, Mass. (July 17, 2014) A signaling pathway once thought to have little if any role during embryogenesis is a key player in the formation of the front-most portion of developing vertebrate embryos. Moreover, signals emanating from this regionreferred to as the "extreme anterior domain" (EAD)orchestrate the complex choreography that gives rise to proper facial structure.

The surprising findings, reported by Whitehead Institute scientists this week in the journal Cell Reports, shed new light on a key process of vertebrate embryonic development.

"The results are exciting on a number of levels," says Whitehead Member Hazel Sive. "We uncovered two new and important things about facial formation, and it turns out they tie together."

Sive and her lab have long been using the frog Xenopus as a model in which to study development of the EAD into the mouth. Several years ago, Amanda Dickinson, a postdoctoral researcher at the time, and Sive showed that the Wnt signaling pathway, which is active throughout the body in a wide array of developmental processes and in cancer, is vital for mouth formation. At the time, they observed that frog embryos whose Wnt signaling was disrupted only in the EAD not only failed to develop mouths, but also experienced other facial abnormalities. This suggested that the EAD may act on adjacent regions as a craniofacial "organizer" or signaling center.

Intrigued by this possibility, the lab searched for regulatory factors in the EAD that could affect craniofacial formation as a whole. Microarray analysis pointed to three highly expressed genes that also happen to be active participants in the Kinin-Kallikrein signaling pathway, best known in humans for its roles in regulating blood pressure, inflammation, and kidney function.

"We had no inkling that this pathway was active in the embryo," says Sive.

The lab confirmed its findings through a series of loss-of-function (LOF) experiments in which they knocked out the expression of each of the three genes in developing embryos and observed the effects. In all cases, the facial regions displayed significant defects, ranging from a lack of a mouth opening to the absence of nostrils to abnormally small eyes. In addition, the migration of the neural crest, whose cells give rise to the nerves, cartilage, bones, and other components of the face, failed to occur normally.

Because the expression of two of the pathway genes yields the peptide Bradykinin, the researchers theorized that introducing Bradykinin into LOF embryos at the appropriate stage would allow them to develop normally. They implanted tiny beads soaked with Bradykinin peptides, rescuing not only mouth formation but also proper neural crest development. The Kinin-Kallikrein pathway ultimately produces the signaling molecule nitric oxide (NO). Not surprisingly, the scientists found reduced NO levels in their LOF embryos. As they predicted, peptide-soaked beads led to an increase in NO production, further confirming the role of the pathway and its genes during facial formation. Importantly, NO had not been thought critical for development of this region.

Finally, in an effort to determine whether the requirement for Kinin-Kallikrein signaling in craniofacial development is conserved, Sive lab graduate student Justin Chen turned to LOF experiments in zebrafish. They found one of the pathway genes to be necessary for proper formation of both the mouth and the neural crest.

"This study greatly enhances our overall view of craniofacial development," says Laura Jacox, a graduate student pursuing a dual DMD-PhD degree through the Harvard School of Dental Medicine and the Harvard-MIT Health Sciences and Technology program. "Knowing what tissues are communicating with each other may help us determine where we could intervene to prevent or treat developmental abnormalities of the face."

Jacox is co-first author of the Cell Reports paper along with postdoctoral researcher Radek Sindelka, who now heads a research group in Prague, Czech Republic.

It is unclear whether similar mechanisms are at play in mammals, including humans. Sive, however, hints that there may be a connection. She notes that certain blood pressure medications, which act on parts of the Kinin-Kallikrein pathway, can cause severe craniofacial defects in newborns if taken during pregnancy. Although such defects have been attributed to effects mediated by the kidneys, Sive's latest findings may implicate Kinin-Kallikrein signaling.


'/>"/>

Contact: Matt Fearer
fearer@wi.mit.edu
617-452-4630
Whitehead Institute for Biomedical Research
Source:Eurekalert

Related biology news :

1. FirstMark Announces New Hire Jay Houtman as Southeast Regional Sales Manager
2. NRC authors brief federal agencies on the state of polar regions
3. Clusters of cooperating tumor-suppressor genes are found in large regions deleted in common cancers
4. Suspicion resides in 2 regions of the brain
5. PuraMed BioScience®, Inc., Launches a Marketing Blitz for LipiGesic® M, Its Clinically-Tested Migraine Pain Reliever in the Denver, CO Region to Coincide with the NACDSs Marketplace 2012 Trade Convention
6. Ken Bierly of the Oregon Watershed Enhancement Board to receive ESA Regional Policy Award
7. Register now for the key osteoporosis meeting in the Asia-Pacific region
8. Discovery of 100 million-year-old regions of DNA shows short cut to crop science advances
9. Small Animal Regional Anesthesia and Analgesia
10. Southwest regional warming likely cause of pinyon pine cone decline, says CU study
11. 4th Asia-Pacific Osteoporosis Meeting to be led by regions leading bone experts
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... Allen Institute for Cell Science today announces the launch ... dynamic digital window into the human cell. The website ... deep learning to create predictive models of cell organization, ... suite of powerful tools. The Allen Cell Explorer will ... resources created and shared by the Allen Institute for ...
(Date:4/3/2017)... , April 3, 2017  Data captured ... engineering platform, detected a statistically significant association ... prior to treatment and objective response of ... potential to predict whether cancer patients will ... treatment, as well as to improve both pre-infusion ...
(Date:3/29/2017)... 29, 2017  higi, the health IT company that ... North America , today announced a Series B ... of EveryMove. The new investment and acquisition accelerates higi,s ... to transform population health activities through the collection and ... higi collects and secures data today on behalf ...
Breaking Biology News(10 mins):
(Date:6/16/2017)... ... June 16, 2017 , ... Cognition Corporation , ... two more sessions of its “From the Helm” Webinar Series. , The ... online templates for design control exercises. Led by David Cronin, Cognition’s CEO, the ...
(Date:6/15/2017)... ... 15, 2017 , ... Cybrexa Therapeutics, a start-up cancer therapeutics ... in the amount of $6 million. An investment vehicle affiliated with HighCape Partners, ... The Series B funding will enable Cybrexa to complete the build-out of its ...
(Date:6/15/2017)... ... 15, 2017 , ... Adam Equipment, a leading provider of ... lab workstation. The guide outlines the procedure in four simple steps, using comprehensive ... anti-vibration table, OIML/ASTM certified weights, and Adam DU specialized software. , A lab ...
(Date:6/14/2017)... USA – , ... ... June 14, 2017 -- Diagenode, a leading global provider ... has licensed a new technology specific for ChIP-sequencing from ... immunoprecipitation followed by sequencing (ChIP-seq) allows the study of ...
Breaking Biology Technology: