Navigation Links
A quicker, cheaper SARS virus detector -- one easily customizable for other targets
Date:5/29/2009

Members of a USC-led research team say they've made a big improvement in a new breed of electronic detectors for viruses and other biological materials one that may be a valuable addition to the battle against epidemics.

It consists of a piece of synthetic antibody attached to a nanowire that's attached to an electrical base, immersed in liquid.

If the protein the antibody binds to is present in the liquid, it will bind to these antibodies, immediately creating a sharply measurable jump in current through the nanowire.

The basic principle of nanotube and nanowire biosensors for protein detection was first demonstrated in 2001, but the new design by a team headed by Zhongwu Chou and Mark Thompson of the University of Southern California uses two new elements.

First, it takes advantage of bioengineered synthetic antibodies, much, much smaller versions of the natural substances that are designed to bind with a specific protein and only that protein.

Second, it uses indium oxide (In2O3) nanowires instead of silicon and other materials previously tried. Metal oxides, according to a new study published in ACSNano, do not, unlike silicon, develop "an insulating native oxide layer that can reduce sensitivity."

The result, according to the paper, is a device that can detect its target molecules with a sensitivity as great as the best alternative modes, do so more rapidly and without use of chemical reagents.

It is also potentially considerably cheaper than alternatives.

"We believe," the authors write, "that nanowire bisensor devices functionalized with engineered proteins can have important applications ranging from disease diagnosis to homeland security."

Additionally, the system can be useful in basis research, in helping to establish certain important parameters for two-part biological systems like the antibody/target protein pair.

The protein the prototype system detects is the SARS (severe acute respiratory syndrome) virus n-protein, which infected more than 8,000 people in 2002-2003, killing nearly 10 percent of them.

Commercial systems using enzyme-linked immunosorbent assay (ELISA) now exist to test for SARS, but the new system has advantages in time, cost and portability.

The first step was the creation, by Richard Roberts and Mark Thompson, chemists, and their team of the synthetic antibody, including both the active area, design to interact with the protein and, at the other end, a chemical "hook" that would bind it to nanowire at this point and only this point. "This strategy allows every bound [detector molecule] to retain full activity, a clear advantage over antibodies, which [in earlier biosensor designs] are often bound to nanowire surface via amine containing residues randomly distributed over the antibody surface."

The Zhou lab, which has specialized in nanowire and nanotube technology for years, performed the complex set of procedures to synthesize the wires, attaching

In tests, the group performed if anything better than predictions, showing a standard and low level of activity when no SARS protein was present, leaping quickly to a higher level when the protein was introduced, in response patterns that varied consistently according to concentration of the SARS protein. Devices complete except for the detector molecule showed no response at all.

The response was complete in less than ten minutes, compared to hours needed for results from ELISA tests - which are basically present/not present tests with relatively little quantitative elements.

Next steps are to enable detection in more complex environment, such as Serum and whole blood, by integrating the nanobiosensor with micro systems such as microfluidics chips and micro filters.


'/>"/>

Contact: Eric Mankin
mankin@usc.edu
213-821-1887
University of Southern California
Source:Eurekalert  

Related biology news :

1. New test promises quicker, more accurate evaluation for cystic fibrosis patients
2. MIT: A quicker, easier way to make coal cleaner
3. The power of multiples: Connecting wind farms can make a more reliable - and cheaper - power source
4. Cheaper drugs now closer to realization with new DropArray technology
5. Iowa State researchers look for smaller, cheaper, 1-dose vaccines
6. Pharmaceutical breakthrough may make a range of drugs cheaper and more available
7. New cheaper method for mapping disease genes
8. TGen investigators devise faster, cheaper way of analyzing the human genome
9. Features of replication suggest viruses have common themes, vulnerabilities
10. First all-African GM crop is resistant to maize streak virus
11. Carnegie Mellon scientist uses mass spectrometer to weigh virus particle, von Willebrand factor
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
A quicker, cheaper SARS virus detector -- one easily customizable for other targets
(Date:1/4/2017)... of attendees at this year,s International Consumer Electronics Show (CES), A&D ... and services, will be featuring its new line of ULTRA CONNECT ... CES Exhibit Suite , the new upper arm and wrist smart blood ... product platform.  Continue Reading ... ...
(Date:12/20/2016)... , Dec. 20, 2016 The ... sharing, rental and leasing is stoking significant interest ... radio frequency technology, Bluetooth low energy (BLE), biometrics ... as the next wave of wireless technologies in ... access system to advanced access systems opens the ...
(Date:12/16/2016)... The global wearable medical device market, in terms of ... USD 5.31 billion in 2016, at a CAGR of 18.0% during ... ... in medical devices, launch of a growing number of smartphone-based healthcare ... healthcare providers, and increasing focus on physical fitness. ...
Breaking Biology News(10 mins):
(Date:1/13/2017)... ... 13, 2017 , ... FireflySci, in response to several customers’ ... solutions for measurements where traditional cuvette applications are not convenient. For instance, a ... sample that would not fit into a typical cuvette inside a spectrophotometer. In ...
(Date:1/12/2017)... ... January 12, 2017 , ... ... of performing routine electrochemical biosensing has increased dramatically. Primarily driven by the ... and quantification of various analytes in complex samples. , Screen-printed ...
(Date:1/12/2017)... , January 12, 2017 ... the world,s biggest facility for producing mycorrhizae. The Centre ... nutrient tapping potential of mycorrhizae and developed a technology ... ... http://mma.prnewswire.com/media/456932/PRNE_TERI_Logo.jpg) The TERI facility has ...
(Date:1/12/2017)... report "Direct-Fed Microbials Market by Type (Lactic Acid Bacteria and Bacillus), Livestock (Pork/Swine, Poultry, Ruminant, ... 2022", published by MarketsandMarkets, the global market is estimated to be valued at ... 2022, at a CAGR of 6.96% from 2016. ... ... ...
Breaking Biology Technology: