Navigation Links
A paradigm shift in immune response regulation
Date:3/19/2009

Over the past decade various pieces of the puzzle how signal transmission controls immunity have been coming together. Now, in Cell an international team reports a paradigm shift in the regulation of immune response. Their results show that interaction with a linear ubiquitin chain is crucial for nuclear factor kappa B activation. Their findings may also contribute towards structure-based drug design to target the defective NF-κB pathway in diseases such as cancer, inflammation and immunodeficiency.

The body's first line of defence against bacteria and viruses is the innate immune system where phagocytes identify the foreign organism and initiate an alarm reaction, often accompanied by inflammation. As a consequence, molecular cues are produced in the blood, such as Tumor Receptor Factors (TNF) or interleukin-1, and these stimulate further reactions in the immune system. But what exactly happens after the molecular cues have docked onto the cell receptors that specialize in immune response? What is the basis of signal transmission from the cellular receptors into the cellular interior? Over the past decade, the overall picture of this large puzzle has been gradually pieced together to show that modifications in the cell protein - including the addition of phosphate groups (phosphorylation) or the conjugation of small modifier ubiquitin (ubiquitination) - play a central role in controlling the immune system.

Scientists at Frankfurt's Goethe University led by Prof. Ivan Dikic have established an international collaboration to investigate the role of ubiquitin modification in these pathways. The international team includes the laboratories of Soichi Wakatsuki (Photon factory, Tsukuba, Japan), Fumiyo Ikeda (MedILS, Split, Croatia), Felix Randow (LMB, Cambridge, UK) and David Komander (LMB, Cambridge, UK). They have been investigating how a transcription factor known as the nuclear factor kappa-B (NF-κB) coordinates the gene expression necessary for the cell's immune response. NF-κB is activated by an enzyme (IkappaB-Kinase, IKK) with a regulatory subunit that brings to mind the mysterious captain in Jules Verne's science fiction novels: NEMO.

The question that had to be answered was how does NEMO activate NF-κB? This is where the work of the Frankfurt biochemists came in. They identified a subdomain of NEMO, called UBAN that binds selectively to a specific type of ubiquitin. This protein is ubiquitous in the cell and has various functions, acting as a multifaceted molecular signal. It can function as a single molecule (monoubiquitin) or in the form of chains (polyubiquitin).

In the scientific journal "Cell", Ivan Dikic and his colleagues report that NEMO specifically binds to linear ubiquitin chains and that this is an essential step for NF-κB activation. This came as a big surprise to the team, since it was previously thought that other types of ubiquitin signals were critical for NEMO-dependent NF-κB activation. "This results in a paradigm change", says Ivan Dikic, "it means, that current knowledge on NF-κB activation and the role of linear ubiquitin chains needs to be updated".

In cooperation with the group of Soichi Wakatsuki, NEMO's structure could be solved. The work demonstrates that the UBAN domain binds to a linear ubiquitin chain according to the key-and-lock-principle. "These new findings not only explain the atomic details of ubiquitin chain selectivity, but can also provide useful insights into developing therapy for targeting the NF-κB pathway", reports Soichi Wakatsuki. Increased activation of the NF-κB pathway is known to be linked to development of different diseases such as cancer and inflammation.

The discovery also has direct medical relevance. "We are happy that this basic scientific discovery may explain the detrimental effect of NEMO mutations in patients suffering from X-linked ectodermal dysplasia and immunodeficiency", Ivan Dikic points out. Ectodermal dysplasia is a hereditary disease, which affects 1 to 5 children in 10,000 newborn. It causes the skin to be very thin and the perspiratory glands to malfunction. In some cases it is combined with immune deficiency. The molecular defect is a mutation in the NEMO gene, which blocks the activation of the NF-κB pathway in epidermal and immune cells.


'/>"/>

Contact: Dr. Ivan Dikic
ivan.dikic@biochem2.de
49-696-301-4546
Goethe University Frankfurt
Source:Eurekalert

Related biology news :

1. International public-private partnership offers new paradigm for medicinal chemistry
2. Paradigm Tactical Products to be Largest Distributor of Metal/Radiation Detection Wands in United States
3. Plant steroids offer new paradigm for how hormones work
4. New paradigm for cell-specific gene delivery
5. Lets talk -- new paradigms in the research of the biomolecular composition of water
6. Paradigm shift in Alzheimerss research: new treatments
7. Host shift triggers cascading effect on ecosystem, research finds
8. Shifts in soil bacterial populations linked to wetland restoration success
9. During exercise, the human brain shifts into high gear on alternative energy
10. Climate change causing significant shift in composition of coastal fish communities
11. Conservation strategies must shift with global environmental change, says CU-Boulder study
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/7/2016)...  Syngrafii Inc. and San Antonio Credit Union ... integrating Syngrafii,s patented LongPen™ eSignature "Wet" solution into ... result in greater convenience for SACU members and ... existing document workflow and compliance requirements. ... Highlights: ...
(Date:6/2/2016)... 2016   The Weather Company , an IBM Business ... industry-first capability in which consumers will be able to interact ... questions via voice or text and receive relevant information about ... Marketers have long sought an advertising solution that can ... personal, relevant and valuable; and can scale across millions of ...
(Date:5/24/2016)... Calif. , May 24, 2016 Ampronix facilitates superior patient care by ... LMD3251MT  3D medical LCD display is the latest premium product recently added to the ... ... ... Sony 3d Imaging- LCD Medical Display- Ampronix News ...
Breaking Biology News(10 mins):
(Date:6/24/2016)...  Regular discussions on a range of subjects including policies, ... entities said Poloz. Speaking at a lecture to ... he pointed to the country,s inflation target, which is set ... "In certain areas there needs ... economic goals, why not sit down and address strategy together?" ...
(Date:6/24/2016)... , ... June 24, 2016 , ... While the majority ... as the Cary 5000 and the 6000i models are higher end machines that use ... height of the spectrophotometer’s light beam from the bottom of the cuvette holder. ...
(Date:6/23/2016)... ... 2016 , ... Mosio, a leader in clinical research patient ... and Retention Tips.” Partnering with experienced clinical research professionals, Mosio revisits the hurdle ... and strategies for clinical researchers. , “The landscape of how patients receive and ...
(Date:6/23/2016)... June 23, 2016   Boston Biomedical , ... compounds designed to target cancer stemness pathways, announced ... granted Orphan Drug Designation from the U.S. Food ... gastric cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin ... to inhibit cancer stemness pathways by targeting STAT3, ...
Breaking Biology Technology: