Navigation Links
A nucleotide change could initiate fragile X syndrome
Date:9/1/2014

Researchers reveal how the alteration of a single nucleotidethe basic building block of DNAcould initiate fragile X syndrome, the most common inherited form of intellectual disability. The study appears in The Journal of Cell Biology.

Fragile X syndrome is caused by a defect in a gene on the X chromosome called fragile X mental retardation 1 (FMR1). Around 1 in 230 women and 1 in 360 men carry a so-called premutation, in which a series of DNA repeats at one end of the FMR1 gene is slightly longer than normal. These repeats are prone to even further expansion when FMR1 is passed from mother to child, causing the gene to switch off and stop producing a protein that is important for some cognitive functions.

A group of researchers from Albert Einstein College of Medicine of Yeshiva University in New York previously found that a certain site that initiates DNA replication, located near to the FMR1 gene, is inactivated in fragile X embryonic stem cells. This inactivation changes the way that the FMR1 gene is copied during cell division, which could pose problems that lead to expansion of the DNA repeats within the gene.

Intriguingly, a specific alteration in the DNA sequence near the FMR1 genea "single-nucleotide polymorphism" or SNP has been linked to an increased risk of repeat expansion in some premutation carriers. These researchers discovered that this SNP overlaps with the inactive replication origin in fragile X embryonic stem cells.

Nucleotides in DNA include one of four bases (cytosine, thymine, adenine, or guanine). The researchers found that normal embryonic stem cells had a thymine base at the SNP site and an active replication origin. Fragile X cells, in contrast, had a cytosine base and an inactive origin. The researchers also derived embryonic stem cells from mothers carrying the fragile X premutation. These cells had a thymine base and a normal replication pattern and, accordingly, showed no tendency to expand their repeat numbers over time.

The findings show that the substitution of cytosine for thymine might inactivate the DNA replication origin when the FMR1 gene is passed from mother to child, increasing the risk of DNA repeat expansions that can lead to fragile X syndrome.


'/>"/>

Contact: Rita Sullivan King
news@rupress.org
212-327-8603
Rockefeller University Press
Source:Eurekalert  

Related biology news :

1. Oligonucleotide Delivery: Biology, Engineering and Development Conference
2. Industry group release testing recommendations for oligonucleotide-based therapeutics
3. Splice-switching oligonucleotide therapeutics is new method for editing gene transcript
4. Holding a mirror to brain changes in autism
5. New study will help protect vulnerable birds from impacts of climate change
6. UNH researchers find African farmers need better climate change data to improve farming practices
7. Fielding questions about climate change
8. Glacier-fed river systems threatened by climate change
9. How old are these rocks, how were they made, and how long ago did these geologic changes happen?
10. Energy requirements make Antarctic fur seal pups vulnerable to climate change
11. Why spring is blooming marvelous (and climate change makes it earlier)
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
A nucleotide change could initiate fragile X syndrome
(Date:3/27/2017)... March 27, 2017  Catholic Health Services (CHS) ... Systems Society (HIMSS) Analytics for achieving Stage 6 ... sm . In addition, CHS previously earned a ... using an electronic medical record (EMR). ... level of EMR usage in an outpatient setting.  ...
(Date:3/23/2017)... PUNE, India , March 23, 2017 The report ... Equipment, Touchless Biometric), Industry, and Geography - Global Forecast to 2022", published by ... growing at a CAGR of 29.63% between 2017 and 2022. ... ... Logo ...
(Date:3/22/2017)... 2017 Optimove , provider of ... such as 1-800-Flowers and AdoreMe, today announced two ... Replenishment. Using Optimove,s machine learning algorithms, these features ... replenishment recommendations to their customers based not just ... customer intent drawn from a complex web of ...
Breaking Biology News(10 mins):
(Date:9/19/2017)... , ... September 19, 2017 , ... ... largest group of funded early-stage tech companies. “Grit” author Angela Duckworth and her ... joining the ic@3401 community is Cooley, an international law firm with decades of ...
(Date:9/19/2017)... ... 2017 , ... The new and improved Oakton® pocket testers, from Cole-Parmer, stand ... with a new cap design that is versatile, functional and leakproof. They are ideal ... test water quality. , The Oakton pocket testers have many user-friendly and functional features. ...
(Date:9/19/2017)... , Sept. 19, 2017 ValGenesis Inc., ... (VLMS) is pleased to announce the strategic partnership with ... provide clients with validation services using the latest technology ... VTI will provide clients with efficient and cost-effective validation ... marketing partner for the ValGenesis VLMS system. ...
(Date:9/19/2017)... ... 2017 , ... Molecular Devices, LLC, a leader in protein ... the CloneSelect™ Single-Cell Printer™ in North America. This novel system utilizes sophisticated ... documentation of monoclonality for use in cell line development. , Clonal cell ...
Breaking Biology Technology: