Navigation Links
A new genome editing method brings the possibility of gene therapies closer to reality

July 3, 2014, Shenzhen, China Researchers from Salk Institute for Biological Studies, BGI, and other institutes for the first time evaluated the safety and reliability of the existing targeted gene correction technologies, and successfully developed a new method, TALEN-HDAdV, which could significantly increased gene-correction efficiency in human induced pluripotent stem cell (hiPSC). This study published online in Cell Stell Cell provides an important theoretical foundation for stem cell-based gene therapy.

The combination of stem cells and targeted genome editing technology provides a powerful tool to model human diseases and develop potential cell replacement therapy. Although the utility of genome editing has been extensively documented, but the impact of these technologies on mutational load at the whole-genome level remains unclear.

In the study, researchers performed whole-genome sequencing to evaluate the mutational load at single-base resolution in individual gene-corrected hiPSC clones in three different disease models, including Hutchinson-Gilford progeria syndrome (HGPS), sickle cell disease (SCD), and Parkinson's disease (PD).

They evaluated the efficiencies of gene-targeting and gene-correction at the haemoglobin gene HBB locus with TALEN, HDAdV, CRISPR/CAS9 nuclease, and found the TALENs, HDAdVs and CRISPR/CAS9 mediated gene-correction methods have a similar efficiency at the gene HBB locus. In addition, the results of deep whole-genome sequencing indicated that TALEN and HDAdV could keep the patient's genome integrated at a maximum level, proving the safety and reliability of these methods.

Through integrating the advantages of TALEN- and HDAdV-mediated genome editing, researchers developed a new TALEN-HDAdV hybrid vector (talHDAdV), which can significantly increase the gene-correction efficiency in hiPSCs. Almost all the genetic mutations at the gene HBB locus can be detected by telHDAdV, which allows this new developed technology can be applied into the gene repair of different kinds of hemoglobin diseases such as SCD and Thalassemia.


Contact: Jia Liu
BGI Shenzhen

Related biology news :

1. Leading evolutionary scientist to discuss how genome of bacteria has evolved
2. Darwin in the genome
3. Analysis of stickleback genome sequence catches evolution in action
4. Athletic frogs have faster-changing genomes
5. PNAS: Precise molecular surgery in the plant genome
6. BGI and Aspera collaborate on high-speed data exchange to advance genome research
7. Researchers announce GenomeSpace environment to connect genomic tools
8. UC Santa Cruz builds national data center for cancer genome research
9. BGI reports the completed sequence of foxtail millet genome
10. Relative reference: Foxtail millet offers clues for assembling the switchgrass genome
11. Maps of Miscanthus genome offer insight into grass evolution
Post Your Comments:
(Date:10/4/2017)... Oct. 4, 2017  GCE Solutions, a global clinical research organization ... document anonymization solution on October 4, 2017. Shadow is designed to ... comply with policy 0070 of the European Medicines Agency (EMA) in ... ... ...
(Date:7/20/2017)... , July 20, 2017 Delta (NYSE: DAL ) ... any Delta aircraft at Reagan Washington National Airport (DCA). ... Delta launches biometrics to board ... Delta,s biometric boarding ... Club is now integrated into the boarding process to allow eligible ...
(Date:6/14/2017)... June 15, 2017  IBM (NYSE: IBM ) is introducing ... event dedicated to developing collaboration between startups and global businesses, ... 15-17. During the event, nine startups will showcase the solutions ... various industries. France ... market, with a 30 percent increase in the number of ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... Disappearing forests and increased emissions are the ... million people each year. Especially those living in larger cities are affected by air ... one of the most pollution-affected countries globally - decided to take action. , “I ...
(Date:10/11/2017)... ... October 11, 2017 , ... Singh Biotechnology today announced ... to SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) B ... to cross the cell membrane and bind intracellular STAT3 and inhibit its function. ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights that ... Polymerized Liposomal Nanoparticle), a technology developed in collaboration with Children’s Hospital Los ...
(Date:10/10/2017)... ... October 10, 2017 , ... Dr. Bob Harman, founder and CEO of ... Club. The event entitled “Stem Cells and Their Regenerative Powers,” was ... Dr. Harman, DVM, MPVM was joined by two human doctors: Peter B. Hanson, M.D., ...
Breaking Biology Technology: