Navigation Links
A new cost-effective genome assembly process
Date:5/5/2013

The U.S. Department of Energy Joint Genome Institute (DOE JGI) is among the world leaders in sequencing the genomes of microbes, focusing on their potential applications in the fields of bioenergy and environment. As a national user facility, the DOE JGI is also focused on developing tools that more cost-effectively enable the assembly and analysis of the sequence that it, as well as other genome centers, generates.

Despite tremendous advances in cost reduction and throughput of DNA sequencing, significant challenges remain in the process of efficiently reconstructing genomes. Existing technologies are good at cranking out short fragments (reads) of DNA letters that are computationally stitched back together (assembled) into longer pieces, so that the order of those letters can be determined and the function of the target sequence discerned. However, genome assembly, the equivalent of trying to put together a multi-million piece jigsaw puzzle without knowing what the picture on the cover of the box is, remains challenging due to the very large number of very small pieces, which must be assembled using current approaches.

As reported May 5 online in the journal Nature Methods, a collaboration between the DOE JGI, Pacific Biosciences (PacBio) and the University of Washington has resulted in an improved workflow for genome assembly that the team describes as a fully automated process from DNA sample preparation to the determination of the finished genome.

The technique, known as HGAP (Hierarchical Genome Assembly Process), uses PacBios single molecule, real-time DNA sequencing platform, which generates reads that can be up to tens of thousands of nucleotides long, even longer than those provided by the workhorse technology of the Human Genome Project era, the Sanger sequencing technology, which produced reads of about 700 nucleotides. The Sanger process involved creating multiple DNA libraries, conducting multiple runs, and combining the data, so that gaps in the code were covered and accuracies of a DNA base assignment were very high. Post-Sanger methods still typically require multiple libraries and often a mix of technologies to produce optimal results. Instead, with HGAP, only a single, long-insert shotgun DNA library is prepared and subjected to automated continuous long-read SMRT sequencing, and the assembly is performed without the need for circular consensus sequencing, the team reported.

This de novo assembly method was tested using three microbes previously sequenced by the DOE JGI. The data collected were compared against the reference sequences for these microbes and the team found that the HGAP method produced final assemblies with >99.999% accuracy.

We are always on the lookout for new approaches that will improve upon the efficient delivery of high-quality data to our growing community of researchers, said Len Pennacchio, DOE JGIs Deputy Director of Genomic Technologies. This technique is one of many improvements that we are pursuing in parallel to achieve additional economies of scale.

The DOE JGIs sequencing efforts account for more than 20% of the more than 20,000 worldwide genome projects (microbes, plants, fungi, algae, and communities of microbes) completed or currently in the queue, and most of those are focused on the biology of environmental, energy, and carbon processing.

We enjoyed a very productive collaboration with JGI on this project and benefitted tremendously from the expertise of JGIs scientists in both the fields of microbiology and microbial genome assembly and annotation, said Jonas Korlach, Chief Scientific Officer at Pacific Biosciences. This expertise provided us with the ability to adapt our single molecule sequencing assembly methods to produce a higher level of finished quality than was previously possible using a gold-standard Sanger finishing approach, and at a speed and price point competitive with alternative next generation sequencing and assembly methods. We look forward to seeing what scientific advances will be enabled by this method as JGIs User Community assesses JGIs capabilities to assemble their microbial genomes using this new approach.

The team will now seek to extend the utility of this new assembly method beyond microbes to the genomes of more complex organisms.


'/>"/>

Contact: David Gilbert
degilbert@lbl.gov
925-296-5643
DOE/Joint Genome Institute
Source:Eurekalert

Related biology news :

1. Cost-effective production of infrared lenses
2. Turtle genome analysis sheds light on the development and evolution of turtle-specific body plan
3. CNIO researchers capture the replication of the human genome for the first time
4. Saint Louis University, University of Toronto biologists help decode turtle genome
5. Genome study suggests new strategies for understanding and treating pulmonary fibrosis
6. Coelacanth genome surfaces
7. Genome sequencing of the living coelacanth sheds light on the evolution of land vertebrate
8. Einstein joins the New York Genome Center as 12th institutional founding member
9. Scientists decode genome of painted turtle, revealing clues to extraordinary adaptations
10. Getting under the shell of the turtle genome
11. Peach genome offers insights into breeding strategies for biofuels crops
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/2/2017)... 2, 2017 Who risk to be deprived ... the full report: https://www.reportbuyer.com/product/4313699/ WILL APPLE ... FIELD? Fingerprint sensors using capacitive technology represent a ... vendor Idex forecasts an increase of 360% of the ... of the fingerprint sensor market between 2014 and 2017 ...
(Date:2/28/2017)...  EyeLock LLC, ein marktführendes Unternehmen im Bereich ... Lösung zur Iris-Erkennung auf der neuesten Mobilplattform ... dem Mobile World Congress 2017 (27. Februar ... 3, Stand 3E10, vorstellen. Der ... – eine Kombination aus Hardware, Software und ...
(Date:2/21/2017)... and PORTLAND, Ore. , Feb. 22, ... Avamere Family of Companies (Avamere Health Services, Infinity Rehab, ... six-month research study that will apply the power of ... senior living and health centers. By analyzing data streaming ... gain insights into physical and environmental conditions, and obtain ...
Breaking Biology News(10 mins):
(Date:3/24/2017)... ROCKVILLE, Md. , March 24, 2017  Infectex ... Fund (MBVF), today announced positive results of a Phase ... drug therapy regimen in patients with multidrug-resistant pulmonary tuberculosis ... by scientists at Sequella, Inc. ( USA ... A total of 140 patients were enrolled ...
(Date:3/24/2017)... YORK , March 24, 2017 ... ended the trading session at 5,817.69, down 0.07%; the ... at 20,656.58; and the S&P 500 closed at 2,345.96, ... as 4 sectors closed in green, 4 sectors finished ... day. This Friday, Stock-Callers.com has initiated reports coverage on ...
(Date:3/23/2017)... ... March 23, 2017 , ... AxioMed ... both viscous and elastic characteristics when deformed, which is identical to how the ... gently absorb compressive forces and return to its natural state along a hysteresis ...
(Date:3/23/2017)... March 23, 2017  Northwest Biotherapeutics (OTCQB: NWBO) ... immune therapies for solid tumor cancers, today announced ... financing it announced last Friday, March 17, 2017. ... institutional investors securities totaling 28,843,692 shares, comprised of ... 10,000,000 shares of Class C Warrants pre-funded at ...
Breaking Biology Technology: