Navigation Links
A new cellular garbage control pathway with relevance for human neurodegenerative diseases
Date:7/18/2014

This news release is available in German.

Proteins, the components of our body that execute, control and organize basically all functions in our cells, are made out of strings of amino acids, which like an origami - are folded into specific and complex three-dimensional structures according to their desired functions. However, since folding and maintaining of such structures is highly sensitive to cellular or environmental stress, proteins can potentially misfold or form clumps (aggregates). Such undesired protein waste can be toxic for cells and may even lead to cell death. Because several human neurodegenerative diseases are known to be linked to an accumulation of abnormal protein aggregates, basic science aimed to understand how cells remove cellular garbage is elementary for designing strategies for a potential prevention or cure of such disorders.

Scientists in the laboratory of Stefan Jentsch at the MPIB now successfully used baker's yeast for screening for new cellular waste disposal pathways. Kefeng Lu, a postdoctoral researcher from China, discovered a new class of helper proteins (termed CUET proteins) present both in yeast and humans that recognize cellular garbage earmarked for disposal by an attached label in the form of the ubiquitously existing protein known as "ubiquitin". Importantly, these newly identified helper proteins channel the cellular garbage by a "self-eating" pathway (autophagy) to the lysosome, a compartment of cells dedicated for destruction and recycling. The Max Planck scientists could also show that a toxic protein related to the abnormal, aggregate-forming protein "huntingtin" of patients with the neurodegenerative Huntington's disease is efficiently destroyed by the newly identified pathway. Remarkably, this pathway seems specific for aggregated proteins like huntingtin and appears to be more potent than previously discovered cellular garbage disposal mechanisms.

Because the identified cellular disposal mechanism operates in yeast as well, the researches will now take full advantage of its powerful experimental possibilities to investigate this pathway further. A detailed analysis of this mechanism will be crucial to understand how aggregate-forming proteins lead to human diseases and may help to develop concepts for possible disease preventions.


'/>"/>

Contact: Anja Konschak
konschak@biochem.mpg.de
0049-898-578-2824
Max Planck Institute of Biochemistry
Source:Eurekalert  

Related biology news :

1. Why anandamide can increase intracellular Ca2+ concentration?
2. Cellular defence against fatal associations between proteins and DNA
3. Cellular gates for sodium and calcium controlled by common element of ancient origin
4. Cellular team players
5. Researchers discover Trojan Horse method of penetrating cellular walls without harm
6. Family of proteins plays key role in cellular pump dynamics
7. Scientists capture most detailed images yet of humans tiny cellular machines
8. Which came first, bi- or tricellular pollen? New research updates a classic debate
9. UNC researchers link aging to cellular interactions that occur across generations
10. Organization of cellular photosystems
11. Protein rescues stuck cellular factories
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
A new cellular garbage control pathway with relevance for human neurodegenerative diseases
(Date:4/26/2016)... , April 27, 2016 ... "Global Multi-modal Biometrics Market 2016-2020"  report to their ... , The analysts forecast the global ... of 15.49% during the period 2016-2020.  ... of sectors such as the healthcare, BFSI, transportation, ...
(Date:4/13/2016)... 2016  IMPOWER physicians supporting Medicaid patients in ... clinical standard in telehealth thanks to a new partnership ... platform, IMPOWER patients can routinely track key health measurements, ... index, and, when they opt in, share them with ... a local retail location at no cost. By leveraging ...
(Date:3/22/2016)... 2016 According to ... for Consumer Industry by Type (Image, Motion, Pressure, ... & IT, Entertainment, Home Appliances, & Wearable ... 2022", published by MarketsandMarkets, the market for ... USD 26.76 Billion by 2022, at a ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... , June 24, 2016 Epic ... sensitively detects cancers susceptible to PARP inhibitors by ... tumor cells (CTCs). The new test has already ... therapeutics in multiple cancer types. Over ... DNA damage response pathways, including PARP, ATM, ATR, ...
(Date:6/23/2016)... ... June 23, 2016 , ... UAS LifeSciences, one ... of their brand, UP4™ Probiotics, into Target stores nationwide. The company, which has ... add Target to its list of well-respected retailers. This list includes such fine ...
(Date:6/23/2016)... , June 23, 2016 Houston ... with the Cy-Fair Sports Association to serve as ... the agreement, Houston Methodist Willowbrook will provide sponsorship ... and connectivity with association coaches, volunteers, athletes and ... with the Cy-Fair Sports Association and to bring ...
(Date:6/23/2016)... June 23, 2016   EpiBiome , a precision ... million in debt financing from Silicon Valley Bank (SVB). ... and to advance its drug development efforts, as well ... "SVB has been an incredible strategic partner ... a traditional bank would provide," said Dr. Aeron ...
Breaking Biology Technology: