Navigation Links
A natural approach for HIV vaccine
Date:3/15/2009

For 25 years, researchers have tried and failed to develop an HIV vaccine, primarily by focusing on a small number of engineered "super antibodies" to fend off the virus before it takes hold. So far, these magic bullet antibodies have proved impossible to produce in people. Now, in research to be published March 15 online by Nature, scientists at The Rockefeller University have laid out a new approach. They have identified a diverse team of antibodies in "slow-progressing" HIV patients whose coordinated pack hunting knocks down the virus just as well as their super-antibody cousins fighting solo.

By showcasing the dynamic, natural immune response in these exceptional patients, the research, led by Michel C. Nussenzweig, Sherman Fairchild Professor and head of the Laboratory of Molecular Immunology, suggests that an effective HIV vaccine may come from a shotgun approach using of a wide range of natural antibodies rather than an engineered magic bullet.

"We wanted to try something different, so we tried to reproduce what's in the patient. And what's in the patient is many different antibodies that individually have limited neutralizing abilities but together are quite powerful," says Nussenzweig, who also is a Howard Hughes Medical Institute investigator. "This should make people think about what an effective vaccine should look like."

HIV strains mutate rapidly, making them especially wily adversaries of the immune system. But one element is shared almost universally among the diverging strains a protein on the envelope of the virus called gp140 that HIV needs to infect immune cells. Prior research has shown that four randomly engineered antibodies that block the activity of that protein prevent the virus from infecting immune cells in culture, but all attempts to coax the human body into producing those four have failed.

So Johannes Scheid, a visiting student in Nussenzweig's lab who is now a doctoral candidate, turned his attention to the antibodies produced by six people infected with HIV whose immune systems put up an exceptionally strong fight. The patients represent the roughly 10 to 20 percent of HIV patients who are able to control the virus and are very slow to progress to disease. Their immune systems' memory B cells produce high levels of antivirus antibodies, but until now, researchers have known little about the antibodies or how effective they are.

With help from Rockefeller's Center for Clinical and Translational Science and Rockefeller scientists David D. Ho and Jeffrey V. Ravetch, Scheid and colleagues isolated 433 antibodies from these individuals' blood serum that specifically targeted the envelope protein the chink in HIV's protean armor. He cloned the antibodies and produced them in bulk, mapped which part of the envelope protein each targeted, and gauged how effective each was in neutralizing the virus. In the process, he identified a new structure within the envelope protein called the gp120 core that had never been recognized as a potential target for antibodies. "It's the first time that anyone has defined what is really happening in the B cell response in these patients," says Scheid.

Scheid's work shows that it's common for these antibodies to have neutralizing activity, says Nussenzweig. But each antibody alone has limited ability to fight the virus. "Individually, they're not as strong as the Famous Four," says Nussenzweig, referring to the high-profile super antibodies on which several vaccine attempts have been based. But in high concentrations, a combination of the sets of antibodies cloned from the individual patients seemed to act as teams to knock down the virus in cell culture as well as any single antibody studied to date. These natural antibodies were also able to recognize a range of HIV strains, indicating that their diversity may be an advantage over a single super antibody that focuses on only one part of the virus, which can mutate. The findings suggest that research into vaccines that mimic this natural antibody response could pay off.


'/>"/>

Contact: Brett Norman
bnorman@rockefeller.edu
212-327-7613
Rockefeller University
Source:Eurekalert

Related biology news :

1. Understanding natural crop defenses
2. Honest crabs, power to the hungry, nice mice and clever meerkats: News from the American Naturalist
3. A natural, alternative insect repellent to DEET
4. Even natural perfumes may cause allergies
5. Ocean islands fuel productivity and carbon sequestration through natural iron fertilization
6. Natural brain substance blocks weight gain in mice, UT Southwestern researchers discover
7. As super-predators, humans reshape their prey at super-natural speeds
8. Particulate emission from natural gas burning home appliances
9. Grape-seed extract kills laboratory leukemia cells, proving value of natural compounds
10. Apolipoprotein(a): A natural regulator of inflammation
11. New research shows how gene function drives natural selection in important class of genetic elements
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/20/2016)... 20, 2016  VoiceIt is excited to announce ... By working together, VoiceIt and VoicePass ... and VoicePass take slightly different approaches to voice ... security and usability. ... new partnership. "This marketing and technology ...
(Date:5/12/2016)... , May 12, 2016 WearablesResearch.com ... just published the overview results from the Q1 wave ... the recent wave was consumers, receptivity to a program ... data with a health insurance company. "We ... to share," says Michael LaColla , CEO of ...
(Date:5/3/2016)... VILNIUS, Lithuania , May 3, 2016 /PRNewswire/ ... today released the MegaMatcher Automated Biometric Identification ... deployment of large-scale multi-biometric projects. MegaMatcher ABIS can ... and accuracy using any combination of fingerprint, face ... of MegaMatcher SDK and MegaMatcher ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... ... , ... While the majority of commercial spectrophotometers and fluorometers use the z-dimension ... are higher end machines that use the more unconventional z-dimension of 20mm. Z-dimension ... bottom of the cuvette holder. , FireflySci has developed several Agilent flow cell ...
(Date:6/23/2016)... , June 23, 2016   Boston Biomedical ... novel compounds designed to target cancer stemness pathways, ... been granted Orphan Drug Designation from the U.S. ... of gastric cancer, including gastroesophageal junction (GEJ) cancer. ... designed to inhibit cancer stemness pathways by targeting ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... Plate® YM (Yeast and Mold) microbial test has received AOAC Research Institute approval ... of microbial tests introduced last year,” stated Bob Salter, Vice President of Regulatory ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... the launch of the Supplyframe Design Lab . Located in Pasadena, Calif., ... the future of how hardware projects are designed, built and brought to market. ...
Breaking Biology Technology: