Navigation Links
A multidisciplinary approach and a new field help to understand cell behavior
Date:11/21/2012

The days of researching cell behavior by using the human eye to look at images from light and fluorescence microscopes have gone. Microscopy has now reached the edge at which it cuts into chemistry, physics and mathematics, and a new field is emerging at the confluence. Called "quantitative bioimaging," this new field is transforming how scientists study fundamental questions of cell behavior.

To explore how modern researchers study cell behavior and how the emerging field of quantitative bioimaging is changing their methods and perceptions, researchers at University of New Mexico and Sandia National Laboratories are organizing an international scientific conference on cell behavior. Entitled "Understanding Cell Behavior through Single Cell and Single Molecule Biology," the conference will run from January 10 through 12, 2013 in the Centennial Engineering Center on the UNM campus. It may be the first time that scientists from around the globe gather to explicitly share research discoveries about fundamental biological questions and, in the same meeting, to explore new areas in computational imaging and image interpretation.

The conference will begin with a cell biology symposium featuring local, national and international speakers. "Biologists can now learn what single molecules are doing on cells," says Janet Oliver, PhD, Associate Director for Research at the UNM Cancer Center, Director of the New Mexico Center for Spatiotemporal Modeling, and Director of the New Mexico Cancer Nanotechnology Training Center. "The powerful new fluorescence microscopes we use in combination with new biological labels light up specific molecules. State-of-the-art microfluidics devices allow us to precisely control cellular conditions," she says. "And with advanced computing, we can extract real time information."

For example, Diane Lidke, PhD, UNM Associate Professor of Pathology, studies how cancer can develop from dysregulated signaling through the family of epidermal growth factor receptors that is, how a cellular chemical chain reaction goes awry to create cancer. To answer this fundamental question, Dr. Lidke stimulates cells at precise times and in a precise order using tiny chambers and pumps developed by Sandia National Labs' microfluidics teams. She then uses newly-developed imaging technologies, such as hyperspectral microscopy and super-resolution microscopy, to look at particular molecules within the stimulated cells.

These new technologies use cutting-edge physics, chemistry, engineering and mathematics to produce and analyze images but they also create a previously unknown problem. "These imaging technologies are generating vast amounts of data," says Dr. Oliver. "The bottleneck now is the image analysis. Microscopists are generating so much data that they must use entirely new analysis techniques." So the second part of the conference is a series of interactive sessions led by physicists, mathematicians and engineers to advance the fields of data capture, large dataset analysis, and imaging data analysis. The scientists will share ideas about ways to organize the overwhelmingly large sets of data and to distill important information from them.

"The partnership between Sandia National Labs and the UNM Cancer Center has really helped to bring this conference together," says Dr. Oliver. "We're thrilled to engage physical scientists and engineers in answering biological questions about cancer."


'/>"/>
Contact: Janet Oliver
joliver@salud.unm.edu
University of New Mexico Cancer Center
Source:Eurekalert

Related biology news :

1. Sweet new approach discovered to help produce metal casting parts, reduce toxicity
2. Traditional fisheries management approach jeopardizes marine ecosystems worldwide
3. Whitehead scientists identify major flaw in standard approach to global gene expression analysis
4. Columbia researchers report novel approach for single molecule electronic DNA sequencing
5. Maintaining Earths sustainability: Scientists, engineers, educators take coordinated approach
6. New approach of resistant tuberculosis
7. New line of approach for combination therapy against melanoma
8. Grassroots approach to conservation developed
9. Cancer Cell article shows first evidence for targeting of Pol I as new approach to cancer therapy
10. Scientists urge new approaches to plant research
11. Computing advances vital to sustainability efforts; new report recommends problem-focused, iterative approach to research
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/21/2016)... VANCOUVER, British Columbia , June 21, 2016 ... been appointed to the new role of principal ... has been named the director of customer development. ... , NuData,s chief technical officer. The moves reflect ... development teams in response to high customer demand ...
(Date:6/16/2016)... 2016 The global ... reach USD 1.83 billion by 2024, according to ... Technological proliferation and increasing demand in commercial buildings, ... drive the market growth.      (Logo: ... development of advanced multimodal techniques for biometric authentication ...
(Date:6/9/2016)... control systems is proud to announce the introduction of fingerprint attendance control software, allowing ... are actually signing in, and to even control the opening of doors. ... ... ... Photo - http://photos.prnewswire.com/prnh/20160609/377487 ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 27, 2016  Global demand for enzymes is ... 2020 to $7.2 billion.  This market includes enzymes ... products, biofuel production, animal feed, and other markets) ... biocatalysts). Food and beverages will remain the largest ... consumption of products containing enzymes in developing regions.  ...
(Date:6/27/2016)... ... 27, 2016 , ... Newly created 4Sight Medical Solutions ... the healthcare market. The company's primary focus is on new product introductions, to ... that are necessary to help companies efficiently bring their products to market. , ...
(Date:6/24/2016)... , June 24, 2016 Epic ... sensitively detects cancers susceptible to PARP inhibitors by ... tumor cells (CTCs). The new test has already ... therapeutics in multiple cancer types. Over ... DNA damage response pathways, including PARP, ATM, ATR, ...
(Date:6/23/2016)... , June 23, 2016   Boston Biomedical ... novel compounds designed to target cancer stemness pathways, ... been granted Orphan Drug Designation from the U.S. ... of gastric cancer, including gastroesophageal junction (GEJ) cancer. ... designed to inhibit cancer stemness pathways by targeting ...
Breaking Biology Technology: