Navigation Links
A high-resolution endoscope as thin as a human hair

Engineers at Stanford have demonstrated a high-resolution endoscope that is as thin as a human hair with a resolution four times better than previous devices of similar design. The so-called micro-endoscope is a significant step forward in high-resolution, minimally invasive bio-imaging with potential applications in research and clinical practice. Micro-endoscopy could enable new methods in diverse fields ranging from study of the brain to early cancer detection.

The new endoscope was developed by a team under the direction of Joseph Kahn, professor of electrical engineering at the Stanford School of Engineering. The results were published recently in the journal Optics Express and showcased in the Optical Society of America's Spotlight on Optics.

Their prototype can resolve objects about 2.5 microns in size, and a resolution of 0.3 microns is easily within reach. A micron is one thousandth of a millimeter. By comparison, today's high-resolution endoscopes can resolve objects only to about 10 microns. The naked eye can see objects down to about 125 microns.

Light paths

Kahn is best known for his work in fiber-optic communicationsthe ultra-fast data pipes essential to the Internet and large-scale data centers. His work on endoscopy began two years ago when he and a fellow Stanford electrical engineer, Olav Solgaard, were discussing biophotonicsa field of light-based technologies used in studying biological systems.

"Olav wanted to know if it would it be possible to send light through a single, hair-thin fiber, form a bright spot inside the body, and scan it to record images of living tissue," said Kahn.

The opportunity and the challenge, Kahn and Solgaard knew, rested in multimode fibers in which light travels via many different paths, known in optics as modes; hence the name, multimode fiber. Light is very good at conveying complex information through such fiberswhether computer data or imagesbut it gets scrambled potentially beyond recognition along the way.

Kahn devised a way to undo the scrambling of information by using a miniature liquid crystal display called a spatial light modulator. To make this possible, Kahn and his graduate student, Reza Nasiri Mahalati, developed an adaptive algorithma specialized computer programby which the spatial light modulator learned how to unscramble the light. Several years before, Kahn had set world records for transmission speeds using a similar trick to unscramble computer data transmitted through multimode fibers.

Research on the micro-endoscope took an unexpected and fortunate turn when Nasiri Mahalati mentioned seminal work in magnetic resonance imaging (MRI) done by John Pauly, another Stanford electrical engineer. Pauly had used random sampling to dramatically speed up image recording in MRIs.

"Nasiri Mahalati said, 'Why not use random patterns of light to speed up imaging through multimode fiber?' and that was it. We were on our way," recalls Kahn. "The record-setting micro-endoscope was born."

Confronting the Laws of Physics

In Kahn's micro-endoscope, the spatial light modulator projects random light patterns through the fiber into the body to illuminate the object under observation. The light reflecting off the object returns through the fiber to a computer. The computer, in turn, measures the reflected power of the light and uses algorithms developed by Nasiri Mahalati and fellow graduate student Ruo Yu Gu to reconstruct an image.

Kahn and his students were stunned to discover their endoscope could resolve four times as many image features as the number of modes in the fiber.

"Previous single-fiber endoscopes were limited in resolution to the number of modes in the fiber," said Kahn, "So this is a fourfold improvement."

The result, however, raised a scientific conundrum for the team.

"This meant that, somehow, we were capturing more information than the laws of physics told us could pass through the fiber," said Kahn. "It seemed impossible."

The team wrestled with the paradox for several weeks before they came up with an explanation. The random intensity patterns mix the modes that can propagate through the fiber, increasing the number of modes fourfold and producing four times as much detail in the image.

"Previous research had overlooked the mixing. The unconventional algorithm we used for image reconstruction was the key to revealing the hidden image detail," said Kahn.

The ultimate endoscope

Kahn and team have created a working prototype. The main limiting factor at this point is that the fiber must remain rigid. Bending a multimode fiber scrambles the image beyond recognition. Instead, the fiber is placed in a thin needle to hold it rigid for insertion.

Rigid endoscopesthose used frequently for surgeries are common, but they often use relatively thick, rod-shaped lenses to yield good images. Flexible endoscopes on the other handthe kind used in colonoscopies and ureteroscopiesusually employ bundles of tens of thousands of individual fibers, each conveying a single pixel of the image. Both types of endoscopes are bulky and have limited resolution.

A single fiber endoscope such as Kahn's would be the ultimate minimally invasive imaging system, and has been the focus of intense research in optical engineering over the past few years.

Kahn is not the first to develop a single-fiber endoscope, but in boosting the resolution it is possible now to conceive of a fiber endoscope about two-tenths of a millimeter in diameterjust thicker than a human hairthat can resolve about eighty thousand pixels at a resolution of about three-tenths of a micron. Today's very best flexible fiber endoscopes, by comparison, are about half-a-millimeter in diameter and can resolve roughly ten thousand pixels with a resolution of about three microns.

The future

A rigid single-fiber micro-endoscope could enable myriad new procedures for microscopic imaging inside living organisms. These range from analyzing neuronal cellular biology in brain tissue to studying muscle physiology and disease to the early detection of various forms of cancer.

Looking ahead, Kahn is excited about the potential of working with biomedical researchers to pioneer these applications, but being a physicist and an engineer at heart, he is most enthralled by the technical challenges of creating a flexible single-fiber endoscope.

"No one knows if a flexible single-fiber endoscope is even possible, but we're going to try," said Kahn.

Contact: Andrew Myers
Stanford School of Engineering

Related biology news :

1. Citizen scientists to document biodiversity with high-resolution imagery during summer solstice
2. High-resolution atomic imaging of specimens in liquid by TEM using graphene liquid cell
3. Havoc in biologys most-used human cell line
4. The way we werent: U of Minnesota biologist debunks myth that humans peaked in Paleolithic era
5. UT Southwestern scientists make mouse model of human cancer, demonstrate cure
6. Study maps human metabolism in health and disease
7. International consortium builds Google Map of human metabolism
8. Human trials for Streptococcus A vaccine
9. Reading the human genome
10. An atlas of the human heart is drawn using statistics
11. MBL scientists find genes linked to human neurological disorders in sea lamprey genome
Post Your Comments:
Related Image:
A high-resolution endoscope as thin as a human hair
(Date:10/29/2015)... -- Daon, a global leader in mobile biometric authentication ... version of its IdentityX Platform , IdentityX v4.0. ... have already installed IdentityX v4.0 and are seeing ... UAF certified server component as an option and ... These customers include some of the largest and most ...
(Date:10/27/2015)... Oct. 27, 2015 In the present market ... concern for various industry verticals such as banking, healthcare, ... the growing demand for secure & simplified access control ... such as hacking of bank accounts, misuse of users, ... such as PC,s, laptops, and smartphones are expected to ...
(Date:10/26/2015)... NEWARK, Calif. , Oct. 26, 2015  Delta ... convenient biometric authentication to mobile and PC devices, announced ... Fujitsu,s smartphone, the arrows NX F-02H launched by NTT ... arrows NX F-02H is the second smartphone to include ... this technology in ARROWS NX F-04G in May 2015, ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... Therapeutics, Inc. (NASDAQ: HALO ) will be presenting at the ... on Wednesday, December 2 at 9:30 a.m. ET/6:30 a.m. PT . ... a corporate overview. th Annual Oppenheimer Healthcare Conference ... a.m. PT . Jim Mazzola , vice president of ... --> th Annual Oppenheimer Healthcare Conference in ...
(Date:11/24/2015)... 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS) (TSX: AEZ) ... of the Toronto Stock Exchange, confirms that as of ... corporate developments that would cause the recent movements in ... --> About Aeterna Zentaris Inc. ... Aeterna Zentaris is a specialty biopharmaceutical company engaged ...
(Date:11/24/2015)... , ... November 24, 2015 , ... The Academy of ... Interest Group (SIG), MultiGP, also known as Multirotor Grand Prix, to represent the First–Person ... few years. Many AMA members have embraced this type of racing and several new ...
(Date:11/24/2015)... 24, 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ: ... the remaining 11,000 post-share consolidation (or 1,100,000 pre-share ... "Series B Warrants") subject to the previously disclosed ... 23, 2015, which will result in the issuance ... to the issuance of such shares, there will ...
Breaking Biology Technology: