Navigation Links
A guiding light for new directions in energy production
Date:9/11/2011

The science of light and liquids has been intimately entwined since Lon Foucault discovered the speed of light in 1862, when he observed that light travels more slowly in water than in air. This physical harmony between the two materials is now being harnessed to collect and drive light to where it can be the most useful. October's issue of Nature Photonics focuses on optofluidics, the study of microfluidicsthe microscopic delivery of fluids through extremely small channels or tubescombined with optics. In a review written by Demetri Psaltis, Dean of EPFL's School of Engineering, he and his co-authors argue that optofluidics is poised to take on one of this century's most important challenges: energy.

"By directing the light and concentrating where it can be most efficiently used, we could greatly increase the efficiency of already existing energy producing systems, such as biofuel reactors and solar cells, as well as innovate entirely new forms of energy production" explains Psaltis. "EPFL is the world leader in optofluidics, our institution is in a position to develop truly efficient and disruptive energy sources."

Sunlight is already used for energy production besides conventional solar panels. For example, it is used to convert water and carbon dioxide into methane in large industrial biofuel plants. Prisms and mirrors are commonly employed to direct and concentrate sunlight to heat water on the roofs of homes and apartment buildings. These techniques already employ the same principles found in optofluidicscontrol and manipulation of light and liquid transferbut often without the precision offered by nano and micro technology.

A futuristic example: Optofluidic solar lighting system

How can we better exploit the light that hits the outside of a building? Imagine sunlight channelled into the building An optofluidic solar lighting system could capture sunlight from a roof using a light concentrating system that follows the sun's path by changing the angle of the water's refraction, and then distribute the sunlight throughout the building through light pipes or fibre optic cables to the ceilings of office spaces, indoor solar panels, or even microfluidic air filters. Using sunlight to drive a microfluidic air filter or aliment an indoor solar panelwhich would be protected from the elements and last longeris a novel way to use solar energy to supplement non-renewable resources.

In such a system, it would be essential to deviate from the secondary devices such as air filtrage and solar panels to maintain a comfortable constant light source for ceiling lightingthe flickering of the light source due to a cloud passing over would be intolerable. In order to modulate these different channels to maintain a constant light source, a system using electrowetting could deviate light from one channel into another both easily and inexpensively. A droplet of water sits on the outer surface of light tube. A small current excites the ions in the water, pushing them to the edge of the droplet and expanding it just enough for it to touch the surface of another tube. This expanded droplet then creates a light bridge between the two parallel light tubes, effectively moderating the amount of light streaming through either one.

Up-scaling for industrial use

"The main challenge optofluidics faces in the energy field is to maintain the precision of nano and micro light and fluid manipulation while creating industrial sized installations large enough to satisfy the population's energy demand," explains David Erickson, professor at Cornell University and visiting professor at EPFL. "Much like a super computer is built out of small elements, up-scaling optofluidic technology would follow a similar modelthe integration of many liquid chips to create a super-reactor."

Since most reactions in liquid channels happen at the point of contact between the liquid and the catalyst-lined tubes, the efficiency of a system depends on how much surface area is available for reactions to take place. Scaling down the size of the channels to the micro and nano level allows for thousands more channels in the same available space, greatly increasing the overall surface area and leading to a radical reduction of the size needed (and ultimately the cost) for catalytic and other chemical reactions. Adding a light source as a catalyst to the directed flow of individual molecules in nanotubes allows for extreme control and high efficiency.

Their review in Nature Phontonics lays out several possibilities for up-scaling optofluidics, such as using optical fibers to transport sunlight into large indoor biofuel reactors with mass-produced nanotubes. They point out that the use of smaller spaces could increase power density and reduce operating costs; optofluidics offers flexibility when concentrating and directing sunlight for solar collection and photovoltaic panels; and by increasing surface area, the domain promises to reduce the use of surface catalyststhe most expensive element in many reactors.


'/>"/>

Contact: Michael Mitchell
michael.mitchell@epfl.ch
41-798-103-107
Ecole Polytechnique Fdrale de Lausanne
Source:Eurekalert  

Related biology news :

1. Genetic testing not cost-effective in guiding initial dosing of common blood thinner
2. October 2008 GEOLOGY and GSA TODAY media highlights
3. Agricultural research highlighted in Houston
4. Atomic-resolution views suggest function of enzyme that regulates light-detecting signals in eye
5. Can genetic information be controlled by light?
6. AGU journal highlights -- Oct. 16, 2008
7. Scripps research team sheds light on immune system suppression
8. Study sheds new light on dolphin coordination during predation
9. Spotlight on cosmetic ingredients conference
10. Polarized light guides cholera-carrying midges that contaminate water supplies
11. Study sheds light on genetic differences that cause a childhood eye disease
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
A guiding light for new directions in energy production
(Date:6/22/2016)...  The American College of Medical Genetics and Genomics was ... as one of the fastest-growing trade shows during the Fastest ... in Las Vegas . ... in each of the following categories: net square feet of ... attendees. The 2015 ACMG Annual Meeting was ranked 23 out ...
(Date:6/21/2016)... , June 21, 2016 NuData ... the new role of principal product architect and ... the director of customer development. Both will report ... technical officer. The moves reflect NuData,s strategic growth ... response to high customer demand and customer focus ...
(Date:6/15/2016)... 15, 2016 Transparency Market ... Recognition Market by Application Market - Global Industry Analysis Size ... to the report, the  global gesture recognition market ... and is estimated to grow at a CAGR ... 2024.  Increasing application of gesture recognition ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... GUELPH, ON , June 27, 2016 /PRNewswire/ - BIOREM ... it has been advised by its major shareholders, Clean ... LP, United States based venture ... common shares of Biorem (on a fully diluted, as ... for the disposition of their entire equity holdings in ...
(Date:6/27/2016)... , ... June 27, 2016 , ... ... bring innovative medical technologies, services and solutions to the healthcare market. The company's ... of various distribution, manufacturing, sales and marketing strategies that are necessary to help ...
(Date:6/24/2016)... TOKYO , June 24, 2016  Regular discussions on ... to take place between the two entities said Poloz. ... in Ottawa , he pointed to the ... and the federal government. ... Poloz said, "Both institutions have common economic goals, why not ...
(Date:6/23/2016)... ... 2016 , ... Mosio, a leader in clinical research patient ... and Retention Tips.” Partnering with experienced clinical research professionals, Mosio revisits the hurdle ... and strategies for clinical researchers. , “The landscape of how patients receive and ...
Breaking Biology Technology: