Navigation Links
A global model for the origin of species independent of geographical isolation

The tremendous diversity of life continues to puzzle scientists, long after the 200 years since Charles Darwin's birth. However, in recent years, consistent patterns of biodiversity have been identified over space, time organism type and geographical region.

Two views of the process of "speciation" -- the evolutionary process by which new biological species arise -- dominates evolutionary theory. The first requires a physical barrier such as a glacier, mountain or body of water to separate organisms enabling groups to diverge until they become separate species. In the second, an environment favors specific characteristics within a species, which encourages divergence as members fill different roles in an ecosystem.

In a new study, "Global patterns of speciation and diversity," just published in Nature, Les Kaufman, Boston University professor of biology and associate director of the BU Marine Program along with a team of researchers from The New England Complex Systems Institute, have collaborated and found a way to settle the debate which deals with the origin of species independent of geographic isolation.

They demonstrated, using a computer model, how diverse species can arise from the arrangement of organisms across an area, without any influence from geographical barriers or even natural selection. Over generations, the genetic distance between organisms in different regions increases, the study noted. Organisms spontaneously form groups that can no longer mate resulting in a patchwork of species across the area. Thus the number of species increases rapidly until it reaches a relatively steady state.

"Our biodiversity results provide additional evidence that species diversity arises without specific physical barriers," the study states.

The computer simulations, the authors, note showed the distribution of species formed patterns similar to those that have occurred with real organisms all around the world.

"The model we put forward in the paper lays the groundwork for more powerful tests of the role played by natural and sexual selection, as well as habitat complexity in shaping the patterns of biological diversity that we see around us today," said Kaufman. Our insights can be applied to the immense challenge that we now face -- not only to prevent the extinction of a large chunk of life, but also to prevent ourselves from quenching the very forces that fuel the continuous creation of new life forms on earth."

This study is also the fourth in a series from The New England Complex Systems Institute on the role of complexity in species coexistence and evolutionary diversification.

"One can think about the creation of species on the genetic level in the same way we think about the appearance of many patterns, including traffic jams," said Yaneer Bar-Yam, president of The New England Complex Systems Institute and a senior author of the study. "While the spatial environment may vary, specific physical barriers aren't necessary. Just as traffic jams can form from the flow of traffic itself without an accident, the formation of many species can occur as generations evolve across the organisms' spatial habitat."


Contact: Ronald Rosenberg
Boston University Medical Center

Related biology news :

1. K-State plant pathologists develop online teaching modules used globally
2. Sustainable bioenergy project has global launch
3. Your own private global warming
4. Your own private global warming
5. Researchers to reveal agings origins on global stage
6. Study highlights massive imbalances in global fertilizer use
7. Global sunscreen wont save corals
8. Global warming increasing the dispersal of flora in Northern forests
9. International Serious Adverse Events Consortium announces initial study results in its global research collaboration to identify genetic markers related to drug induced liver injury
10. From alarmed to dismissive: The six ways Americans view global warming
11. NASA satellite detects red glow to map global ocean plant health
Post Your Comments:
(Date:10/29/2015)... 2015 NXTD ) ("NXT-ID" ... on the growing mobile commerce market and creator ... a leading marketplace to discover and buy innovative ... wallet on StackSocial for this holiday season.   ... "Company"), a biometric authentication company focused on the ...
(Date:10/27/2015)... Synaptics Inc. (NASDAQ: SYNA ), the leader ... adopted the Synaptics ® ClearPad ® Series ... newest flagship smartphones, the Nexus 5X by LG and ... --> --> Synaptics works closely with ... in the joint development of next generation technologies. Together, ...
(Date:10/23/2015)... -- Research and Markets ( ) has announced ... Market 2015-2019" report to their offering. ... voice recognition biometrics market to grow at a CAGR ... --> The report, Global Voice Recognition ... in-depth market analysis with inputs from industry experts. The ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... ... November 24, 2015 , ... InSphero AG, the leading supplier of easy-to-use ... promoted Melanie Aregger to serve as Chief Operating Officer. , Having joined ... management team and was promoted to Head of InSphero Diagnostics in 2014. ...
(Date:11/24/2015)... /CNW Telbec/ - ProMetic Life Sciences Inc. (TSX: PLI) (OTCQX: ... Pierre Laurin , President and Chief Executive Officer of ProMetic, ... Jaffray 27 th Annual Healthcare Conference to be held ... st , at 8.50am (ET) and ProMetic,s ... day. The presentation will be available live via a webcast ...
(Date:11/24/2015)... 24, 2015 HemoShear Therapeutics, LLC, a ... for metabolic disorders, announced today the appointment of ... of Directors (BOD). Mr. Watkins is the former ... Sciences (HGS), and also served as the chairman ... Powers , Chairman and CEO of HemoShear Therapeutics. ...
(Date:11/24/2015)... and NEW YORK , November ... irst investment by Bristol-Myers Squibb in a European ... Bristol-Myers Squibb Company in which the companies will ... in immuno-oncology and other areas of unmet medical need. The ... in LSP 5, the latest LSP fund. This is the ...
Breaking Biology Technology: