Navigation Links
A genome may reduce your carbon footprint
Date:5/12/2009

Madison, WI, May 11, 2009 -- With the costs of genome sequencing rapidly decreasing, and with the infrastructure now developed for almost anyone with access to a computer to cheaply store, access, and analyze sequence information, emphasis is increasingly being placed on ways to apply genome data to real world problems, including reducing dependency on fossil fuel. For the efficient production of bioenergy, this may be accomplished through development of improved feedstocks.

A recently published study examined the impact of very cheap sequence data (approximately 1USD per genome) on improvement of switchgrass, a perennial grass well suited to biomass production. Results were published in the current issue of The Plant Genome.

Acquiring the genetic component of natural variation is or will soon become cheap enough that it will soon be able to be incorporated through marker-assisted selection into almost all breeding programs. With availability of cheap sequencing capacity, neither complete sequence assembly nor gene annotation is required to apply these techniques.

In a species such as switchgrass there exists a great deal of phenotypic variation derived from latitudinal adaptation across its natural range and local adaptation to soil, temperature, and moisture conditions. It is still largely undomesticated and thus large gains might be realized through fixation of beneficial alleles in breeding populations. There are likely to be a few genes with large effects that will dramatically impact yields once incorporated into breeding programs. This has occurred during the domestication of all our grain crops, but it may take just a fraction of the time now.

The development of a dollar genome sequence could provide information highways that would cut across several disciplines and drive the development of next generation biomass feedstocks, bioproducts, and processes for replacing fossil fuels. New feedstocks could produce sustainable high yields with minimal inputs in regions where competition with food is minimized, as well as provide ancillary environmental benefits associated with carbon sequestration and environmental remediation.

Another result of inexpensive sequencing would be an increased use of comparative genomics. A comprehensive survey of genetic diversity would help guide conservation efforts to preserve germplasm diversity and allow reconstruction of past speciation events at a more detailed level.

As a result of access to multiple related genomes, similarities between closely related species would allow inference of missing data. For example, if a draft switchgrass genome assembly does not provide a complete assembly as judged by comparison to an inbred genome or more closely related grass, it will be possible to infer unresolved regions, including retrotransposon family composition and composition of other abundant repetitive elements. Comparative approaches would be applied to better understand the molecular basis for differences between species that result in higher or lower yields in different environments.


'/>"/>

Contact: Sara Uttech
suttech@crops.org
608-268-4948
Crop Science Society of America
Source:Eurekalert

Related biology news :

1. Unravelling new complexity in the genome
2. Conquest of land began in shark genome
3. One species entire genome discovered inside anothers
4. Genome study shines light on genetic link to height
5. First individual genome sequence published
6. Ultraconserved elements in the genome: Are they indispensable?
7. $10 million gift to support cutting-edge epigenome center at USC
8. Fungus genome yielding answers to protect grains, people and animals
9. Which came first, the chicken genome or the egg genome?
10. Researchers expand efforts to explore functional landscape of the human genome
11. Genome update defines landscape of breast and colon cancers
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/17/2016)... Nov. 17, 2016  AIC announces that it has just released a new white ... require high-performance scale-out plus high speed data transfer storage solutions. Photo - ... ... ... Setting up a high performance computing or ...
(Date:11/15/2016)... , Nov. 15, 2016  Synthetic Biologics, ... developing therapeutics focused on the gut microbiome, today ... of 25,000,000 shares of its common stock and ... stock at a price to the public of ... to Synthetic Biologics from the offering, excluding the ...
(Date:11/14/2016)... Inc. ("xG" or the "Company") (Nasdaq: XGTI, XGTIW), a ... challenging operating environments, announced its results for the third ... conference call to discuss these results on November 15, ... Key Recent Accomplishments The ... Vislink Communication Systems. The purchase is expected to close ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... ... December 01, 2016 , ... DrugDev believes the only way to ... technology experience. All three tenets were on display at the 2nd Annual DrugDev User ... 40 sponsor, CRO and site organizations to discuss innovation and the future of clinical ...
(Date:12/2/2016)... The immunohistochemistry (IHC) market is projected to reach ... during the forecast period of 2016 to 2021 dominated by immunohistochemistry ... the largest share of immunohistochemistry (IHC) market, by end user.   ... , , ... across 225 pages, profiling 10 companies and supported with 181 tables ...
(Date:11/30/2016)... 2016 /PRNewswire/ - Portage Biotech Inc. ("Portage" or "the ... excited to announce the formation of EyGen, Ltd. ... ophthalmology assets through proof of concept. EyGen,s lead ... Portage Pharmaceuticals Limited and being developed for topical ... anterior segment diseases. This agent has the potential ...
(Date:11/30/2016)... BEIJING , Nov. 30, 2016 /PRNewswire/ ... of genomic services and solutions with cutting edge next-generation ... has completed a USD $75 Million [515 Million RMB] ... CMB International Capital Management ( Shenzhen ) ... Ltd. ("SDIC Innovation") and Shanghai Sigma Square Investment Center ...
Breaking Biology Technology: