Navigation Links
A genetic device performs DNA diagnosis
Date:2/7/2013

Scientists hope that one day in the distant future, miniature, medically-savvy computers will roam our bodies, detecting early-stage diseases and treating them on the spot by releasing a suitable drug, without any outside help. To make this vision a reality, computers must be sufficiently small to fit into body cells. Moreover, they must be able to "talk" to various cellular systems. These challenges can be best addressed by creating computers based on biological molecules such as DNA or proteins. The idea is far from outrageous; after all, biological organisms are capable of receiving and processing information, and of responding accordingly, in a way that resembles a computer.

Researchers at the Weizmann Institute of Science have recently made an important step in this direction: They have succeeded in creating a genetic device that operates independently in bacterial cells. The device has been programmed to identify certain parameters and mount an appropriate response.

The device searches for transcription factors - proteins that control the expression of genes in the cell. A malfunction of these molecules can disrupt gene expression. In cancer cells, for example, the transcription factors regulating cell growth and division do not function properly, leading to increased cell division and the formation of a tumor. The device, composed of a DNA sequence inserted into a bacterium, performs a "roll call" of transcription factors. If the results match preprogrammed parameters, it responds by creating a protein that emits green light - supplying a visible sign of a "positive" diagnosis. In follow-up research, the scientists - Prof. Ehud Shapiro and Dr. Tom Ran of the Biological Chemistry and Computer Science, and Applied Mathematics Departments - plan to replace the light-emitting protein with one that will affect the cell's fate, for example, a protein that can cause the cell to commit suicide. In this manner, the device will cause only "positively" diagnosed cells to self-destruct.

In the present study, published in Nature's Scientific Reports, the researchers first created a device that functioned like what is known in computing as a NOR logical gate: It was programmed to check for the presence of two transcription factors and respond by emitting a green light only if both were missing. When the scientists inserted the device into four types of genetically engineered bacteria - those making both transcription factors, those making none of the transcription factors, and two types making one of the transcription factors each - only the appropriate bacteria shone green. Next, the research team - which also included graduate students Yehonatan Douek and Lilach Milo - created more complex genetic devices, corresponding to additional logical gates.

Following the success of the study in bacterial cells, the researchers are planning to test ways of recruiting such bacteria as an efficient system to be conveniently inserted into the human body for medical purposes (which shouldn't be a problem; recent research reveals there are already 10 times more bacterial cells in the human body than human cells). Yet another research goal is to operate a similar system inside human cells, which are much more complex than bacteria.


'/>"/>

Contact: Yivsam Azgad
news@weizmann.ac.il
972-893-43856
Weizmann Institute of Science
Source:Eurekalert

Related biology news :

1. Nearby chimpanzee populations show much greater genetic diversity than distant human populations
2. Will a genetic mutation cause trouble? Ask Spliceman
3. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
4. Perception and preference may have genetic link to obesity
5. A foot in the door to genetic information
6. Genetic survey of endangered Antarctic blue whales shows surprising diversity
7. Epigenetic signatures direct the repair potential of reprogrammed cells
8. Epigenetics and epidemiology -- hip, hype and science
9. Genetic variation in East Asians found to explain resistance to cancer drugs
10. First complete full genetic map of promising energy crop
11. Genetic research develops tools for studying diseases, improving regenerative treatment
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/13/2017)... Calif. , April 13, 2017 UBM,s ... York will feature emerging and evolving technology ... Both Innovation Summits will run alongside the expo portion ... speaker sessions, panels and demonstrations focused on trending topics ... largest advanced design and manufacturing event will take place ...
(Date:4/11/2017)... , April 11, 2017 NXT-ID, ... security technology company, announces the appointment of independent Directors Mr. ... to its Board of Directors, furthering the company,s corporate ... ... NXT-ID, we look forward to their guidance and benefiting from ...
(Date:4/4/2017)... , April 4, 2017   EyeLock LLC ... announced that the United States Patent and Trademark Office ... broadly covers the linking of an iris image with ... transaction) and represents the company,s 45 th issued ... patent is very timely given the multi-modal biometric capabilities ...
Breaking Biology News(10 mins):
(Date:4/20/2017)... and PETACH TIKVAH, Israel , ... a leading developer of adult stem cell technologies for neurodegenerative ... Officer, will present at the Alliance for Regenerative Medicine,s (ARM) ... on Thursday, April 27, 2017 at 09:40 EDT in ... Ralph Kern , MD, MHSc, Chief Medical Officer & Chief ...
(Date:4/19/2017)... ... 18, 2017 , ... The Vibrating Orifice Aerosol Generator (VOAG) ... monodisperse droplets of known diameters for research applications such as for calibrating droplet ... drying monodisperse droplets. , The VOAG requires forcing liquid out of an ...
(Date:4/19/2017)... ... , ... Alisa Wright, founder and CEO of Singota Solutions , has ... in Lafayette, Indiana. , The Distinguished Alumni Award was established in 1984 to ... scientific endeavors. , Wright began her career in the pharmaceutical industry with firms ...
(Date:4/19/2017)... ... April 19, 2017 , ... Nobilis Therapeutics Announces Completion of ... Leverage Clinical Data in its Upcoming Post Traumatic Stress Disorder Trial , Nobilis ... clinical trial assessing efficacy of its NBTX-001, a xenon-based therapeutic in the treatment of ...
Breaking Biology Technology: