Navigation Links
A detailed look at HIV in action

The human intestinal tract, or gut, is best known for its role in digestion. But this collection of organs also plays a prominent role in the immune system. In fact, it is one of the first parts of the body that is attacked in the early stages of an HIV infection. Knowing how the virus infects cells and accumulates in this area is critical to developing new therapies for the over 33 million people worldwide living with HIV. Researchers at the California Institute of Technology (Caltech) are the first to have utilized high-resolution electron microscopy to look at HIV infection within the actual tissue of an infected organism, providing perhaps the most detailed characterization yet of HIV infection in the gut.

The team's findings are described in the January 30 issue of PLOS Pathogens.

"Looking at a real infection within real tissue is a big advance," says Mark Ladinsky, an electron microscope scientist at Caltech and lead author of the paper. "With something like HIV, it's usually very difficult and dangerous to do because the virus is an infectious agent. We used an animal model implanted with human tissue so we can study the actual virus under, essentially, its normal circumstances."

Ladinsky worked with Pamela Bjorkman, Max Delbrck Professor of Biology at Caltech, to take three-dimensional images of normal cells along with HIV-infected tissues from the gut of a mouse model engineered to have a human immune system. The team used a technique called electron tomography, in which a tissue sample is embedded in plastic and placed under a high-powered microscope. Then the sample is tilted incrementally through a course of 120 degrees, and pictures are taken of it at one-degree intervals. All of the images are then very carefully aligned with one another and, through a process called back projection, turned into a 3-D reconstruction that allows different places within the volume to be viewed one pixel at a time.

"Most prior electron microscopy studies of HIV have focused on the virus itself or on infection of laboratory-grown cell cultures," says Bjorkman, who is also an investigator with the Howard Hughes Medical Institute. "Ours is the first major electron microscopy study to look at HIV interacting with other cells in the actual gut tissue of an infected animal model."

By procuring such detailed images, Ladinsky and Bjorkman were able to confirm several observations of HIV made in prior, in vitro studies, including the structure and behavior of the virus as it buds off of infected cells and moves into the surrounding tissue and structural details of HIV budding from cells within an infected tissue. The team also described several novel observations, including the existence of "pools" of HIV in between cells, evidence that HIV can infect new cells both by direct contact or by free viruses in the same tissue, and that pools of HIV can be found deep in the gut.

"The study suggests that an infected cell releases newly formed viruses in a semisynchronous wave pattern," explains Ladinsky. "It doesn't look like one virus buds off and then another in a random way. Rather, it appears that groups of virus bud off from a given cell within a certain time frame and then, a little while later, another group does the same, and then another, and so on."

The team came to this conclusion by identifying single infected cells using electron microscopy. Then they looked for HIV particles at different distances from the original cell and saw that the groups of particles were more mature as their distance from the infected cell increased.

"This finding showed that indeed these cells were producing waves of virus rather than individual ones, which was a neat observation," says Ladinsky.

In addition to producing waves of virus, infected cells are also thought to spread HIV through direct contact with their neighbors. Bjorkman and Ladinsky were able to visualize this phenomenon, known as a virological synapse, using electron microscopy.

"We were able to see one cell producing a viral bud that is contacting the cell next to it, suggesting that it's about to infect directly," Ladinsky says. "The space between those two cells represents the virological synapse."

Finally, the team found pools of HIV accumulating between cells where there was no indication of a virological synapse. This suggested that a virological synapse, which may be protected from some of the body's immune defenses, is not the only way in which HIV can infect new cells. The finding of HIV transfer via free pools of free virus offers hope that treatment with protein-based drugs, such as antibodies, could be an effective means of augmenting or replacing current treatment regimens that use small-molecule antiretroviral drugs.

"We saw these pools of virus in places where we had not initially expected to see them, down deep in the intestine," he explains. "Most of the immune cells in the gut are found higher up, so finding large amounts of the virus in the crypt regions was surprising."

The team will continue their efforts to look at HIV and related viruses under natural conditions using additional animal models, and potentially people.

"The end goal is to look at a native infection in human tissue to get a real picture of how it's working inside the body, and hopefully make a positive difference in fighting this epidemic," says Bjorkman.


Contact: Deborah Williams-Hedges
California Institute of Technology

Related biology news :

1. Temp-controlled nanopores may allow detailed blood analysis
2. Detailed Flex Belt Review and Announcement of New Discount Coupon at Flex Belt Critic Site
3. Berkeley Lab researchers get a detailed look at a DNA repair protein in action
4. Scripps Research Institute scientists achieve most detailed picture ever of key part of hepatitis C
5. High-tech X-ray imaging technique to offer detailed look at engineered tissue
6. International Polar Year conference: From knowledge to action
7. Scientists study the catalytic reactions used by plants to split oxygen from water
8. Analysis of stickleback genome sequence catches evolution in action
9. Drug interactions wont exclude HCV transplant or HIV co-infected patients from treatment
10. Yeast cell reaction to Zoloft suggests alternative cause, drug target for depression
11. Support for climate change action drops, Stanford poll finds
Post Your Comments:
(Date:10/13/2015)... Research and Markets ( ) has announced the ... Market - Estimation & Forecast (2015-2020)" report to ... --> The biometric market value is anticipated to ... in 2020 at an estimated CAGR of 16.47% from ... . Growing digitization in the government sector is expected ...
(Date:10/12/2015)... -- NXTD ) ("NXT-ID" or the "Company"), a ... reports on the recent SNS Future in Review Conference in ... NXTD ) ("NXT-ID" or the "Company"), a biometric authentication company ... recent SNS Future in Review Conference in Park ... NXTD ) ("NXT-ID" or the "Company"), a biometric authentication ...
(Date:10/8/2015)... October 8, 2015 NXT-ID, ... "Company"), a biometric authentication company focused on the ... Wocket® smart wallet announces that revenues for the ... $410,000 compared with $113,00 for the three months ... months ended September 30, 2015 were approximately $520,000. ...
Breaking Biology News(10 mins):
(Date:10/13/2015)... ... ... Proove Biosciences, a commercial and research leader ... Medicine of the University of Southern California (USC) Pain Center to study ... Clinical Objectives Linking Genotypic and Phenotypic Association with Pain Outcomes) is one of ...
(Date:10/12/2015)... Calif. and BRUSSELS , Oct. ... (Euronext Brussels: UCB) today presented additional findings from an exploratory ... The findings were presented today in an oral plenary ... (ASBMR) 2015 Annual Meeting in Seattle . ... --> The small exploratory sub-study data showed ...
(Date:10/12/2015)... , Oct. 12, 2015 This report covers ... include cell type, products, applications, end-user markets and geographic ... HIGHLIGHTS The global cell expansion market generated revenue ... to reach revenues of $9.7 billion in 2015 and ... rate (CAGR) of 17.8% from 2015 to 2020. ...
(Date:10/12/2015)... octubre de 2015 El 8 de octubre, ... récord en el congreso con su declaración acerca del ... Plasma Awareness Week (IPAW), que se celebrará del 11 ... la Plasma Protein Therapeutics Association (PPTA) y ... , Aumentar la concienciación mundial acerca de la donación ...
Breaking Biology Technology: