Navigation Links
A cavity that you want
Date:2/26/2014

BUFFALO, N.Y. Associated with unhappy visits to the dentist, "cavity" means something else in the branch of physics known as optics.

Put simply, an optical cavity is an arrangement of mirrors that allows beams of light to circulate in closed paths. These cavities help us build things like lasers and optical fibers used for communications.

Now, an international research team pushed the concept further by developing an optical "nanocavity" that boosts the amount of light that ultrathin semiconductors absorb. The advancement could lead to, among other things, more powerful photovoltaic cells and faster video cameras; it also could be useful for splitting water using energy from light, which could aid in the development of hydrogen fuel.

The team, comprised of faculty and students from the University at Buffalo and two Chinese universities, presented its findings Feb. 24 in the journal Advanced Materials. The paper, called "Nanocavity enhancement for ultra-thin film optical absorber," is available here: http://bit.ly/1bGGIbO.

"We're just scratching the surface, but the preliminary work that we've done is very promising," said Qiaoqiang Gan, PhD, lead author and UB assistant professor of electrical engineering. "This advancement could lead to major breakthroughs in energy harvesting and conversion, security and other areas that will benefit humankind."

Semiconductors form the basis of modern electronics. They work by manipulating the flow of energy in electronic devices. The most common semiconductor material, silicon, is used to make microchips for cellular phones, computers and other electronic devices.

Industry has kept pace with the demand for smaller, thinner and more powerful optoelectronic devices, in part, by shrinking the size of the semiconductors used in these devices.

The problem, however, is that these ultrathin semiconductors do not absorb light as well as conventional bulk semiconductors. Therefore, there is an intrinsic tradeoff between the ultrathin semiconductors' optical absorption capacity and their ability to generate electricity.

As a result, researchers worldwide are trying to find ways to boost the amount of light that ultrathin semiconductors can absorb. Harvard University researchers recently had varying degrees of success by combining thin films of germanium, another common semiconductor, on a gold surface.

"While the results are impressive, gold is among the most expensive metals," said Suhua Jiang, associate professor of materials science at Fudan University in China. "We illustrated a nanocavity, made with aluminum or other whitish metals and alloys that are far less expensive, can be used to increase the amount of light that semiconducting materials absorb."

The nanocavity consists of, from bottom to top: aluminum, aluminum oxide and germanium. In the experiment, light passed through the germanium, which is 1.5 to 3 nanometers thick, and circulated in a closed path through the aluminum oxide and aluminum.

The absorption rate peaked at 90 percent, with germanium absorbing roughly 80 percent of the blue-green light and aluminum absorbing the rest. This is ideal, said Haomin Song, PhD candidate in electrical engineering at UB and the paper's first author, because the bulk of the light stays within the semiconducting material.

"The nanocavity has many potential applications. For example, it could help boost the amount of light that solar cells are able to harvest; it could be implanted on camera sensors, such as those used for security purposes that require a high-speed response. It also has properties that could be useful for photocatalytic water splitting, which could help make hydrogen fuel a reality," Song said.

Before any of that happens, however, more research must be done, especially as it relates to how the semiconductor would turn the light into power as opposed to heat.


'/>"/>
Contact: Cory Nealon
cmnealon@buffalo.edu
716-645-4614
University at Buffalo
Source:Eurekalert  

Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
A cavity that you want
(Date:6/20/2016)... 2016 Securus Technologies, a leading provider ... public safety, investigation, corrections and monitoring announced that ... has secured the final acceptance by all three ... Access Systems (MAS) installed. Furthermore, Securus will have ... installed by October, 2016. MAS distinguishes between legitimate ...
(Date:6/9/2016)... 2016 Paris Police Prefecture ... security solution to ensure the safety of people and operations ... the major tournament Teleste, an international technology group ... announced today that its video security solution will be utilised ... up public safety across the country. The system roll-out is ...
(Date:6/2/2016)... , June 2, 2016   The Weather Company , ... Watson Ads, an industry-first capability in which consumers will be ... able to ask questions via voice or text and receive ... Marketers have long sought an advertising ... that can be personal, relevant and valuable; and can scale ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... ... will join the faculty of the University of North Carolina Kenan-Flagler Business ... strategy and entrepreneurship at UNC Kenan-Flagler, with a focus on the school’s international ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial spectrophotometers and fluorometers ... the 6000i models are higher end machines that use the more unconventional z-dimension of ... beam from the bottom of the cuvette holder. , FireflySci has developed several ...
(Date:6/23/2016)... - FACIT has announced the creation of a ... Propellon Therapeutics Inc. ("Propellon" or "the Company"), to ... of first-in-class WDR5 inhibitors for the treatment of ... an exciting class of therapies, possessing the potential ... patients. Substantial advances have been achieved with the ...
(Date:6/23/2016)...  The Biodesign Challenge (BDC), a university competition that ... living systems and biotechnology, announced its winning teams at ... New York City . The teams, ... at MoMA,s Celeste Bartos Theater during the daylong summit. ... curator of architecture and design, and Suzanne Lee ...
Breaking Biology Technology: