Navigation Links
A breakthrough in understanding the biology and treatment of ovarian cancer
Date:2/21/2012

Researchers at The Pennsylvania State University College of Medicine, Hershey, Pennsylvania have discovered that the presence and integrity of the opioid growth factor receptor (OGFr), which mediates the inhibitory action of opioid growth factor (OGF) on cell proliferation, is a key to understanding the progression and treatment of human ovarian cancer. Transplantation of human ovarian cancer cells that were molecularly engineered to have a reduced expression of OGFr, into immunocompromised mice resulted in ovarian tumors that grew rapidly. This discovery, reported in the February 2012 issue of Experimental Biology and Medicine, provides fresh new insights into the pathogenesis and therapy of a lethal cancer that is the fifth leading cause of cancer-related mortality among women in the USA, and has a death rate that is unchanged for over 75 years.

The OGF (also-termed [Met5]-enkephalin)-OGFr axis plays a fundamental role in cancer, development, and cellular renewal by regulating cell proliferation. An important question addressed in this study relates to the requirement of this peptide-receptor system for the progression of carcinogenesis. Human ovarian cancer cell lines that were genetically modified to underexpress OGFr grew far more rapidly in tissue culture than control (empty vector/wildtype) cell lines. Moreover, the addition of OGF to cultures of these genetically modified cells did not respond to the inhibitory peptide and change cell number, indicating that the loss of OGFr interfered with the function of the OGF-OGFr axis with respect to regulating cell proliferation. Immunocompromised mice injected with ovarian cancer cells that had a reduction in OGFr displayed tumors much earlier than controls, and these tumors grew faster than controls. Putting this information together with knowledge that the pathway for OGF-OGFr regulation of cell proliferation in ovarian cancer is by way of increasing the cyclin-dependent inhibitory kinase proteins p16 and p21, we now can understand that minimizing the quantity of OGFr results in an increase in the number of cells entering the G1/S phase of the cell cycle. This has the net effect of increasing the progression of tumorigenic events. These results reveal the critical nature of OGFr in human ovarian cancer, and that the receptor along with its ligand, OGF, is essential for determining the course of these neoplasias.

The research team was comprised of Dr. Ian S. Zagon, Distinguished University Professor, and Dr. Patricia J. McLaughlin, Professor, along with Dr. Renee N. Donahue in the Department of Neural & Behavioral Sciences. Drs. Zagon and McLaughlin discovered that endogenous opioids serve as growth factors, and have been pioneers in translating their findings from the bench to the bedside. Dr. Zagon states that "Over 75% of women are initially diagnosed with advanced ovarian cancer. Despite excellent initial response to cytoreductive surgery and adjuvant chemotherapy, 65% of these patients relapse within two years. However, only palliative care is available for these patients. With evidence from Phase I and II clinical trials as to the success of OGF for the treatment of advanced pancreatic cancer and knowledge presented herein that the OGF-OGFr axis is a critical determinant of the course of ovarian neoplasia, the present study raises the possibility of using this information to modulate the OGF-OGFr pathway with i) exogenous OGF, ii) imiquimod to upregulate OGFr, and/or iii) low dose naltrexone (LDN) to increase OGF and OGFr, as a therapeutic strategy for ovarian carcinoma." Co-author Dr. McLaughlin adds that "A major problem in ovarian cancer is the need for diagnostic markers - both for early diagnosis and to monitor treatment modalities. Since some of the signaling pathways for OGF-OGFr are known (e.g., karyopherin β, Ran, p16, p21), the components of this system would represent a worthwhile focus in designing diagnostic assays." Dr. Donahue, who conducted the ovarian cancer studies and its relationship to the OGF-OGFr axis for her doctoral dissertation, states that "Ovarian cancers frequently have a methylation of p16 that is associated with an increased progression of ovarian cancer and a loss of OGFr in ovarian tumors. The diminished expression of OGFr and its repercussions on tumorigenesis, only adds to the concern about the need for information concerning genetic and epigenetic changes that may impact the course of disease and its treatment. Our findings also hold potentially ominous overtones for those individuals taking naltrexone for addictive disorders. The dosage used for treatment of addiction blocks opioid receptors continually. The present findings that diminishing the OGF-OGFr axis by depleting the receptor exacerbates tumorigenesis, could place these patients using naltrexone at risk for accelerating disease processes that involve cell proliferation."

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "This compelling evidence confirms the absolute requirement for OGFr (and OGF) as a tonically active inhibitory regulatory mechanism in ovarian cancer. As a corollary, amplifying the OGF-OGFr pathway is a novel and highly effective biotherapeutic strategy to suppress the progression of these deadly cancers."


'/>"/>

Contact: Dr. Ian Zagon
isz1@psu.edu
Society for Experimental Biology and Medicine
Source:Eurekalert

Related biology news :

1. Breakthrough optical technology to assess colon cancer risk, accuracy
2. Sandia, SES win Popular Mechanics Breakthrough Innovator Award
3. NC State finds new nanomaterial could be breakthrough for implantable medical devices
4. Adult stem cell breakthrough
5. A scientific breakthrough on the control of the bad cholesterol
6. Fly guy makes memory breakthrough
7. Researchers make breakthrough in the production of double-walled carbon nanotubes
8. Key to future medical breakthroughs is systems biology, say leading European scientists
9. World breakthrough in treating premature babies
10. Mount Sinai Hospital researcher makes stem cell breakthrough
11. Stem cell breakthrough gives new hope to sufferers of muscle-wasting diseases
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/2/2017)... 2017 Summary This report provides ... KGaA and its partnering interests and activities since 2010. ... Description The Partnering Deals and Alliance since 2010 report ... one of the world,s leading life sciences companies. ... to ensure inclusion of the most up to date ...
(Date:2/28/2017)... News solutions for biometrics, bag drop and New ADA-compliant kiosk ... At PTE 2017 ... Materna will present its complete end-to-end passenger journey, from ... benefit for passengers. To accelerate the whole passenger handling process, ... to take passengers through the complete integrated process with a ...
(Date:2/22/2017)... 2017 With the biometrics market to ... four technologies that innovative and agile startups must ... in the changing competitive landscape: multifactor authentication (MFA), ... "Companies can no longer afford to ... Dimitrios Pavlakis , Industry Analyst at ABI ...
Breaking Biology News(10 mins):
(Date:3/22/2017)... 22, 2017   VWR (NASDAQ: ... product and service solutions to laboratory and ... acquired EPL Archives, Inc., an international biorepository ... entire regulated product research, development and commercialization ... and ancillary services. EPL Archives is widely ...
(Date:3/22/2017)... ... March 21, 2017 , ... Proper glycosylation is critical ... desired increase and/or decrease in antibody-dependent cellular cytotoxicity or complement-dependent cytotoxicity, there is ... antibodies. , To meet this demand, the team at SCIEX has developed ...
(Date:3/22/2017)... ... March 21, 2017 , ... The Conference Forum has announced the launch ... held on May 10-11, 2017, at the Colonnade Hotel in Boston, MA. The CMO ... Officer peer-to-peer learning, benchmarking and support. , “The Chief Medical Officer faces a unique ...
(Date:3/22/2017)... WI (PRWEB) , ... March 22, 2017 , ... The ... scientific research agencies as outlined in the Administration’s recently published fiscal year 2018 budget ... the National Institutes of Health (NIH) by $5.8 billion or roughly 20% of its ...
Breaking Biology Technology: