Navigation Links
A brain-recording device that melts into place

Scientists have developed a brain implant that essentially melts into place, snugly fitting to the brain's surface. The technology could pave the way for better devices to monitor and control seizures, and to transmit signals from the brain past damaged parts of the spinal cord.

"These implants have the potential to maximize the contact between electrodes and brain tissue, while minimizing damage to the brain. They could provide a platform for a range of devices with applications in epilepsy, spinal cord injuries and other neurological disorders," said Walter Koroshetz, M.D., deputy director of the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health.

The study, published in Nature Materials, shows that the ultrathin flexible implants, made partly from silk, can record brain activity more faithfully than thicker implants embedded with similar electronics.

The simplest devices for recording from the brain are needle-like electrodes that can penetrate deep into brain tissue. More state-of-the-art devices, called micro-electrode arrays, consist of dozens of semi-flexible wire electrodes, usually fixed to rigid silicon grids that do not conform to the brain's shape.

In people with epilepsy, the arrays could be used to detect when seizures first begin, and deliver pulses to shut the seizures down. In people with spinal cord injuries, the technology has promise for reading complex signals in the brain that direct movement, and routing those signals to healthy muscles or prosthetic devices.

"The focus of our study was to make ultrathin arrays that conform to the complex shape of the brain, and limit the amount of tissue damage and inflammation," said Brian Litt, M.D., an author on the study and an associate professor of neurology at the University of Pennsylvania School of Medicine in Philadelphia. The silk-based implants developed by Dr. Litt and his colleagues can hug the brain like shrink wrap, collapsing into its grooves and stretching over its rounded surfaces.

The implants contain metal electrodes that are 500 microns thick, or about five times the thickness of a human hair. The absence of sharp electrodes and rigid surfaces should improve safety, with less damage to brain tissue. Also, the implants' ability to mold to the brain's surface could provide better stability; the brain sometimes shifts in the skull and the implant could move with it. Finally, by spreading across the brain, the implants have the potential to capture the activity of large networks of brain cells, Dr. Litt said.

Besides its flexibility, silk was chosen as the base material because it is durable enough to undergo patterning of thin metal traces for electrodes and other electronics. It can also be engineered to avoid inflammatory reactions, and to dissolve at controlled time points, from almost immediately after implantation to years later. The electrode arrays can be printed onto layers of polyimide (a type of plastic) and silk, which can then be positioned on the brain.

To make and test the silk-based implants, Dr. Litt collaborated with scientists at the University of Illinois in Urbana-Champaign and at Tufts University outside Boston. John Rogers, Ph.D., a professor of materials science and engineering at the University of Illinois, invented the flexible electronics. David Kaplan, Ph.D., and Fiorenzo Omenetto, Ph.D., professors of biomedical engineering at Tufts, engineered the tissue-compatible silk. Dr. Litt used the electronics and silk technology to design the implants, which were fabricated at the University of Illinois.

Recently, the team described a flexible silicon device for recording from the heart and detecting an abnormal heartbeat.

In the current study, the researchers approached the design of a brain implant by first optimizing the mechanics of silk films and their ability to hug the brain. They tested electrode arrays of varying thickness on complex objects, brain models and ultimately in the brains of living, anesthetized animals.

The arrays consisted of 30 electrodes in a 5x6 pattern on an ultrathin layer of polyimide with or without a silk base. These experiments led to the development of an array with a mesh base of polyimide and silk that dissolves once it makes contact with the brain so that the array ends up tightly hugging the brain.

Next, they tested the ability of these implants to record the animals' brain activity. By recording signals from the brain's visual center in response to visual stimulation, they found that the ultrathin polyimide-silk arrays captured more robust signals compared to thicker implants.

In the future, the researchers hope to design implants that are more densely packed with electrodes to achieve higher resolution recordings.

"It may also be possible to compress the silk-based implants and deliver them to the brain, through a catheter, in forms that are instrumented with a range of high performance, active electronic components," Dr. Rogers said.


Contact: Daniel Stimson
NIH/National Institute of Neurological Disorders and Stroke

Related biology news :

1. New studies help establish potential of artificial liver support devices
2. Incorporating biofunctionality into nanomaterials for medical, health devices
3. Sorting device for analyzing biological reactions puts the power of a lab in a researcher’s pocket
4. Stitching together lab-on-a-chip devices with cotton thread and sewing needles
5. Ardiem Medical obtains non-exclusive license for neuromodulation devices
6. New ORNL sensor exploits traditional weakness of nano devices
7. Silver nanoparticles may one day be key to devices that keep hearts beating strong and steady
8. Pitt-led team gets $5.6 million contract for heart assist device for infants and toddlers
9. Habit-learning device will lower energy bills under new clean energy cashback scheme
10. New adhesive device could let humans walk on walls
11. Novel NIST connector uses magnets for leak-free microfluidic devices
Post Your Comments:
Related Image:
A brain-recording device that melts into place
(Date:11/4/2015)... ALBANY, New York , November 4, 2015 /PRNewswire/ ... According to a new market report published by Transparency ... Size, Share, Growth, Trends and Forecast 2015 - 2022", ... value of US$ 30.3 bn by 2022. The market ... during the forecast period from 2015 to 2022. Rising ...
(Date:10/29/2015)... RESTON, Va. , Oct. 29, 2015 ... announced today that it has released a new version ... Daon customers in North America ... gains. IdentityX v4.0 also includes a FIDO UAF ... customers are already preparing to activate FIDO features. These ...
(Date:10/29/2015)... 2015 Today, LifeBEAM , a ... 2XU, a global leader in technical performance sports ... with advanced bio-sensing technology. The hat will allow ... key biometrics to improve overall training performance. As ... will bring together the most advanced technology, extensive ...
Breaking Biology News(10 mins):
(Date:11/30/2015)... , ... November 30, 2015 , ... Global Stem Cells Group announced the ... in the cities of Arica and Iquique in northern Chile. The facilities are part of ... the most advanced protocols and techniques in stem cell medicine to patients from around the ...
(Date:11/30/2015)... Mass. , Nov. 30, 2015 ... HART ), a biotechnology company developing bioengineered organ ... received written notification from The NASDAQ Stock Market ... bid price requirements. The letter noted that as ... HART,s common stock having exceeded $1.00 per share ...
(Date:11/30/2015)... Nov. 30, 2015 Human Longevity, Inc. (HLI), ... has acquired Cypher Genomics, Inc., a leading genome informatics ... interpretation software solutions. The San Diego ... including Cypher CEO and Co-founder, Ashley Van Zeeland , ... Business.  Financial details of the deal were not disclosed. ...
(Date:11/30/2015)... Germany , November 30, 2015 ... Vienna, Austria to be held December 1-4, ... in Vienna, Austria to be ... owned subsidiary of Vycor Medical, Inc. ("Vycor") (OTCQB: VYCO), announced ... Therapy Suite at the 3rd European Congress of NeuroRehabilitation ...
Breaking Biology Technology: