Navigation Links
A biological basis for the 8-hour workday?
Date:4/23/2009

PHILADELPHIA - The circadian clock coordinates physiological and behavioral processes on a 24-hour rhythm, allowing animals to anticipate changes in their environment and prepare accordingly. Scientists already know that some genes are controlled by the clock and are turned on only one time during each 24-hour cycle. Now, researchers at the University of Pennsylvania School of Medicine and the Salk Institute for Biological Studies found that some genes are switched on once every 12 or 8 hours, indicating that shorter cycles of the circadian rhythm are also biologically encoded. Using a novel time-sampling approach in which the investigators looked at gene activity in the mouse liver every hour for 48 hours, they also found 10-fold more genes controlled by the 24-hour clock than previously reported.

This the first report where researchers have found other periodicities than the 24-hour cycle functioning in a live animal.

These findings, which appear in the April issue of PLoS Genetics, have implications for better understanding disruptions to normal circadian rhythms that contribute to a host of pathologies such as cardiovascular and metabolic disease, cancer, and aging-related disorders.

"The principal frequency, which is not a surprise, is the 24-hour cycle, and it is the most prevalent," says senior author John Hogenesch, PhD, Associate Professor of Pharmacology in the Institute for Translational Medicine and Therapeutics at Penn. "What was a surprise to us although we set up the experiment to see exactly this are the 12-hour and the 8-hour cycles.

To uncover these shorter oscillations, the Hogenesch and Salk team isolated RNA from the livers of mice every hour for 48 hours. Microarray analysis showed that more than 3,000 genes were expressed on a circadian rhythm which account for approximately 4% of all of the genes expressed in the liver. Additionally, 260 genes were expressed on a 12-hour cycle and 63 genes were expressed on an 8-hour cycle. The investigators saw similar 12-hour gene expression patterns in five other tissues.

"There is an obvious biological basis to a 12-hour rhythm," Hogenesch says. "The 12-hour genes predicted dusk and dawn. These are two really, really stressful transitions that your body goes through and your mind goes through. Anybody who has young children realizes that they are more likely to cry around those times and you're more likely to cry with them." The shift in gene expression controlled by these harmonics can help an animal prepare for the behavioral and physiological changes that accompany the shift from light to dark and back.

"We have less of a handle on the 8-hour rhythms," he says, "but the fact that we can see them reliably means to me there is the possibility that there could be a biological basis to an 8-hour cycle."

Parallel experiments using RNA samples from synchronized tissue culture cells uncovered only genes that cycled on a 24-hour rhythm and showed no evidence of the shorter oscillations, suggesting that some of the timing cues are systemically controlled and some are controlled by the cell itself.

Feeding appears to control one of the 12-hour gene expression peaks. Mice consume about 20% of their daily calories right after they wake at dusk, which is near one gene expression peak. When the researchers restricted feeding to a different time of day one 12-hour peak disappeared and the other became more pronounced. "We were left with the autonomously driven circadian protein transcription the 24-hour component which was unshifted by the feeding change," Hogenesch says.

The high-density time sampling had an additional payoff: The team gained a sharper picture of the genes controlled by the 24-hour circadian clock. "We were able to more precisely measure the number of protein transcripts and the identity of the transcripts than we were able to with less frequent time sampling.

"The largest previously identified sets included 400 to 500 circadian-controlled genes and now we have 3,000 that are oscillating in the liver," says Hogenesch. Using improved statistical methods also led to better accuracy. "We were able to more precisely say that, for example, the pituitary gland has 10-fold fewer oscillating protein transcripts than the liver, and cell-autonomous models have 10-fold less than that."


'/>"/>

Contact: Karen Kreeger
karen.kreeger@uphs.upenn.edu
215-349-5658
University of Pennsylvania School of Medicine
Source:Eurekalert  

Related biology news :

1. Field stations foster serendipitous discoveries in environmental, biological sciences
2. CEL-SCI Corporation to Launch Aseptic Filling for Stem Cell Produced Therapies and Other Biological Products
3. New explanation for a puzzling biological divide along the Malay Peninsula
4. Unclear regulations obstacle to biological diversity
5. Musicians have biological advantage in identifying emotion in sound
6. Biological control of tropical weeds using arthropods
7. Study finds most wars occur in Earths richest biological regions
8. Argonne scientists discover possible mechanism for creating handedness in biological molecules
9. Animal and biological science highlights: San Antonio Fluid Dynamics Conference, Nov. 23-25
10. GEN reports on novel tools for deciphering biological networks
11. Argonne scientists peer into heart of compound that may detect chemical, biological weapons
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
A biological basis for the 8-hour workday?
(Date:4/11/2017)... 11, 2017 NXT-ID, Inc. (NASDAQ:   ... announces the appointment of independent Directors Mr. Robin D. ... Board of Directors, furthering the company,s corporate governance and expertise. ... Gino Pereira , ... forward to their guidance and benefiting from their considerable expertise ...
(Date:4/4/2017)... 4, 2017   EyeLock LLC , a leader ... United States Patent and Trademark Office (USPTO) has issued ... linking of an iris image with a face image ... the company,s 45 th issued patent. ... timely given the multi-modal biometric capabilities that have recently ...
(Date:3/29/2017)... the health IT company that operates the largest health ... today announced a Series B investment from BlueCross BlueShield ... investment and acquisition accelerates higi,s strategy to create the ... activities through the collection and workflow integration of ambient ... secures data today on behalf of over 36 million ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... FL (PRWEB) , ... October ... ... (RPS®) today announces publication of a United States multicenter, prospective clinical study ... use, disposable, point-of-care diagnostic test capable of identifying clinically significant acute bacterial ...
(Date:10/11/2017)... ... October 11, 2017 , ... The CRISPR-Cas9 system ... experiments and avoiding the use of exogenous expression plasmids. The simplicity of programming ... systematic gain-of-function studies. , This complement to loss-of-function studies, such as with ...
(Date:10/11/2017)... ROTTERDAM, the Netherlands and LAGUNA HILLS, ... that The Institute of Cancer Research, London ... will use MMprofiler™ with SKY92, SkylineDx,s prognostic tool to risk-stratify ... high-risk trial known as MUK nine . The University ... this trial, which is partly funded by Myeloma UK, and ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights that give it ... Nanoparticle), a technology developed in collaboration with Children’s Hospital Los Angeles (CHLA). ...
Breaking Biology Technology: