Navigation Links
A*Star scientists discover how to combat hospital-acquired infections and life-threatening toxins

A team of scientists from A*STAR's Institute of Molecular and Cell Biology (IMCB) has discovered the secret recipe for 'antidotes' that could neutralize the deadly plant toxin Ricin, widely feared for its bioterrorism potential, as well as the Pseudomonas exotoxin (PE) responsible for the tens of thousands of hospital-acquired infections in immune-compromised patients all over the world. The results of this first ever genome-wide study to understand how the Ricin and PE toxins attack cells may also be useful for designing more effective antidotes against Diphtheria and Shiga-like toxins secreted by infectious strains of E. coli bacteria, such as those responsible for the recent food poisoning outbreak in Germany.

In this study, the team led by IMCB Principal Investigator, Dr Frdric Bard examined the entire human genome of about 22,000 genes to identify those genes of normal host cell processes which Ricin and PE toxins hijack in order to kill the cell. Of the several host genes identified, the team discovered one called ERGIC2 to be an attractive therapeutic target because it is not only highly essential for Ricin but also required for PE intoxication. "This means that we could potentially develop a generic antidote that is effective against the two different types of toxins by blocking ERGIC2 function," said Dr Bard.

Ricin is an extremely potent poison that can easily be purified from the widely available castor beans. Security experts say an amount roughly equivalent to half a grain of rice is enough to kill an adult, making it 1,000 times more poisonous than cyanide. There are currently no known antidotes for Ricin, and the ease of production of this tasteless, odorless plant toxin is why ricin is feared for its immense bioterrorism potential.

Hospital-acquired infections (HAIs) are a major healthcare problem affecting millions of people around the world. The U.S. Centers for Disease Control and Prevention estimates that HAIs leads to US$45 billion in healthcare cost annually and results in nearly 100,000 deaths per year, making HAIs the fourth leading cause of death. The bacteria Pseudomonas aeruginosa that secretes PE toxin is a common cause of HAIs in vulnerable individuals, including those with burn injuries or receiving intensive care. Unfortunately, HAIs are increasingly difficult to treat because the emergence of antibiotic-resistant bacteria is on the rise. Similarly, the E. coli strain that produces Shiga toxins, found in the recent deadly food poisoning cases in Germany, were also resistant to antibiotics. Moreover, in food poisoning cases caused by such toxin-producing bacteria, doctors refrain from using antibiotics as killing the bacteria actually causes more toxins to be released, bringing on the worst symptoms of the illness . There is therefore a real need worldwide for antidotes against these life-endangering toxins.

Highlighting the significance of this study, Dr Bard added, "Through this genome-wide screen, our understanding of how toxins interact with human cells at the molecular level expanded tremendously. Our hope is that with these new therapeutic targets identified from the human genome, we will be one step closer to finding toxin antidotes that will make hospital-acquired infections and enterotoxic E. Coli outbreaks a thing of the past."

More about protein toxins

Though immunologically different from each other, Ricin, PE, Diphtheria and Shiga toxins all kill by destroying the cell's protein synthesis 'factories', the place where all proteins necessary for the cell's survival are produced. To travel to these protein 'factories' in the cell, the toxins first trick the host cell into turning off a natural defense mechanism that destroys foreign proteins. Next, they exploit the host cell's internal transport pathway to reach the protein 'factories', destroying them and killing the cell. When this happens, cell death is imminent. If not contained, toxins released from dead cells can spread to neighboring healthy cells, resulting in rapid and widespread tissue and organ damage.

By identifying the specific host genes required for these toxins to attack the cell's protein 'factories', this study effectively singled out the attractive therapeutic targets from the entire human genome for developing antidotes that could potentially be effective against any toxins that share the same mode of action. For instance, ERGIC2 was found to be an important component of the cell's internal transport pathway that the toxins hijack to reach the cell's protein 'factories'.


Contact: Dr. Sarah Chang KC
Agency for Science, Technology and Research (A*STAR), Singapore

Related biology news :

1. Agilent Technologies and A*STAR launch all-in-one drug screening platform
2. A*STAR scientists score hat-trick against cancer
3. UCLA scientists complete first mapping of molecule found in human embryonic stem cells
4. Cutting-edge imaging techniques for neuroscientists available in latest laboratory manual
5. New duck-billed dinosaur gives scientists clues to evolution of head ornamentation and provinciality
6. Scripps Research scientists create vaccine against heroin high
7. Hebrew U. scientists show for first time how early human embryo acquires its shape
8. Plenary speakers address challenges in the delivery of sustained antiretroviral therapy in developing countries, call for social scientists to take their place at the HIV/AIDS policy-making table, and stress the need for a long-term response to AIDS
9. OHSU scientists discover new role for vitamin C in the eye -- and the brain
10. Scientists to assemble knowledgebase on plants, microbes, to aid US biofuel, environment efforts
11. Simple little spud helps scientists crack potatos mighty genome
Post Your Comments:
(Date:10/29/2015)... Oct. 29, 2015 Today, LifeBEAM ... partnership with 2XU, a global leader in technical ... smart hat with advanced bio-sensing technology. The hat ... to monitor key biometrics to improve overall training ... the two companies will bring together the most advanced ...
(Date:10/27/2015)... Synaptics Inc. (NASDAQ: SYNA ), the leader ... adopted the Synaptics ® ClearPad ® Series ... newest flagship smartphones, the Nexus 5X by LG and ... --> --> Synaptics works closely with ... in the joint development of next generation technologies. Together, ...
(Date:10/26/2015)...  Delta ID Inc., a company focused on bringing ... devices, announced its ActiveIRIS® technology powers the iris recognition ... by NTT DOCOMO, INC in Japan ... to include iris recognition technology, after a very successful ... May 2015, world,s first smartphone to have this capability. ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... PUNE, India , November 26, 2015 /PRNewswire/ ... The Global Biobanking Market 2016 - 2020 ... biobanks by maintaining integrity and quality in long-term ... and enabling long-term cost-effectiveness. Automation minimizes manual errors ... improves the technical efficiency. Further, it plays a ...
(Date:11/25/2015)... 25, 2015 2 nouvelles études permettent ... les différences entre les souches bactériennes retrouvées dans la ... des êtres humains . Ces recherches  ouvrent une nouvelle ... prise en charge efficace de l,un des problèmes ... chats .    --> 2 nouvelles études ...
(Date:11/25/2015)... HOLLISTON, Mass. , Nov. 25, 2015 /PRNewswire/ ... ), a biotechnology company developing bioengineered organ implants for ... will present at the LD Micro "Main Event" ... p.m. PT. The presentation will be webcast live and ... will also be available at the conference for one-on-one ...
(Date:11/25/2015)... , Nov. 25, 2015 /PRNewswire/ - Aeterna Zentaris Inc. ... its business and prospects remain fundamentally strong and ... (zoptarelin doxorubicin) recently received DSMB recommendation to continue ... following review of the final interim efficacy and ... Primary Endpoint in men with heavily pretreated castration- ...
Breaking Biology Technology: