Navigation Links
65-million-year-old asteroid impact triggered a global hail of carbon beads
Date:5/5/2008

BLOOMINGTON, Ind. -- The asteroid presumed to have wiped out the dinosaurs struck the Earth with such force that carbon deep in the Earth's crust liquefied, rocketed skyward, and formed tiny airborne beads that blanketed the planet, say scientists from the U.S., U.K., Italy, and New Zealand in this month's Geology.

The beads, known to geologists as carbon cenospheres, cannot be formed through the combustion of plant matter, contradicting a hypothesis that the cenospheres are the charred remains of an Earth on fire. If confirmed, the discovery suggests environmental circumstances accompanying the 65-million-year-old extinction event were slightly less dramatic than previously thought.

"Carbon embedded in the rocks was vaporized by the impact, eventually forming new carbon structures in the atmosphere," said Indiana University Bloomington geologist Simon Brassell, study coauthor and former adviser to the paper's lead author, Mark Harvey.

The carbon cenospheres were deposited 65 million years ago next to a thin layer of the element iridium -- an element more likely to be found in Solar System asteroids than in the Earth's crust. The iridium-laden dust is believed to be the shattered remains of the 200-km-wide asteroid's impact. Like the iridium layer, the carbon cenospheres are apparently common. They've been found in Canada, Spain, Denmark and New Zealand.

But the cenospheres' origin presented a double mystery. The cenospheres had been known to geologists only as a sign of modern times -- they form during the intense combustion of coal and crude oil. Equally baffling, there were no power plants burning coal or crude oil 65 million years ago, and natural burial processes affecting organic matter from even older ages -- such as coals from the 300-million-year-old Carboniferous Period -- had simply not been cooked long or hot enough.

"Carbon cenospheres are a classic indicator of industrial activity," Harvey said. "The first appearance of the carbon cenospheres defines the onset of the industrial revolution."

The scientists concluded the cenospheres could have been created by a new process, the violent pulverization of the Earth's carbon-rich crust.

Geologists do believe the Earth burned in spots as molten rock and super-hot ash fell out of the sky and onto flammable plant matter. But the charcoal-ized products of these fires only appear in some places on Earth, and are more often found near the asteroid impact site of Chicxulub Crater, just west of Mexico's Yucatan Peninsula. Some geologists had thought all carbon particles resulting from the impact was ash from global scale forest fires, but the present research strongly contradicts that assumption.

The scientists examined rock samples from eight marine locations in New Zealand, Italy, Denmark and Spain. They also examined carbon-rich particles from five non-marine locations in the U.S. and Canada. Following chemical and microscopic analysis, the researchers concluded the particles were carbon cenospheres, similar to the ones produced by industrial combustion.

The scientists also found that the farther the sample site was from the Chicxulub Crater, the smaller the cenospheres tended to be. That observation is consistent with the expectation that particles were produced by the asteroid impact, since once the particles are ejected, heavier particles should fall back to Earth sooner (and travel shorter distances) than lighter particles.

Last, the scientists estimated the total mass of carbon cenospheres ejected by the asteroid collision, assuming a global distribution, to be perhaps as much as 900 quadrillion kilograms. Whether or not the carbon cenospheres are truly ubiquitous, however, needs further corroboration.

"There are still clues to unravel about the events occurring around the time of the impact," Brassell said. "And there are aspects of the Earth's natural carbon cycle that we didn't previously consider."

Harvey is interested in the unique properties of the cenospheres themselves. "Perhaps we can generate and study carbon cenospheres to better understand them," he said. "We also need to look for the cenospheres in other parts of the world and also around the time of other extinction events."


'/>"/>

Contact: David Bricker
brickerd@indiana.edu
812-856-9035
Indiana University
Source:Eurekalert  

Related biology news :

1. How your mothers emotional legacy impacts your life
2. Carnegie Mellon studies how climate change impacts food production
3. Lizard hunting styles impact ability to walk, run
4. Where college students live can impact their weight, eating and exercise habits
5. Yale study shows how rare genes have big impact on blood pressure
6. Researchers to develop ocean sanctuary noise budget to evaluate potential impact on marine mammals
7. Amphibians respond behaviorally to impact of clear cutting
8. Climate change has major impact on oceans
9. Adapting local ecosystems can soften impact of global climate change
10. Impacts of fossil fuels on fish and people
11. Bottom trawling impacts, clearly visible from space
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
65-million-year-old asteroid impact triggered a global hail of carbon beads
(Date:1/18/2017)... 18, 2017 MedNet Solutions , ... the entire spectrum of clinical research, is proud ... year for the organization in terms of corporate ... eClinical products and services. The company,s exceptional achievements ... of iMedNet ™ ...
(Date:1/12/2017)... -- Trovagene, Inc. (NASDAQ: TROV ), a developer ... it has signed agreements with seven strategic partners across ... Middle East for commercialization of the Trovera™ ... of international distribution agreements for Trovagene,s CLIA based liquid ... The initial partners will introduce Trovagene,s liquid biopsy tests ...
(Date:1/12/2017)... , January 12, 2017 A new report by Allied Market ... the global biometric technology market is expected to generate revenue of $10.72 billion by ... Continue Reading ... Allied Market Research Logo ...      (Logo: http://photos.prnewswire.com/prnh/20140911/647229) ...
Breaking Biology News(10 mins):
(Date:1/20/2017)... January 20, 2017 Stock-Callers.com explores ... have influenced the most recent performances of select equities. ... RGLS ), Abeona Therapeutics Inc. (NASDAQ: ... TBPH ), and Sage Therapeutics Inc. (NASDAQ: ... Grand View Research, global Biotech market size is expected to reach $604.40 ...
(Date:1/19/2017)... , Jan 19, 2017 Research and ... by Profiling Technology, Biomolecules, Cancer Type, Application - Global Opportunity Analysis ... ... forecasts that the global market is projected to reach $15,737 million ... 13% from 2016 to 2022. Omic technologies segment ...
(Date:1/19/2017)... -- Research and Markets ... has announced the addition of the "Implantable ... report to their offering. Report Highlights: ... a detailed analysis on current and future market trends to identify the ... values as the base numbers Key market trends across ...
(Date:1/19/2017)... 2017  ArmaGen, Inc., today announced that it ... chief executive officer, as well as a member ... ArmaGen more than 17 years of executive management ... biotherapeutics and pharmaceuticals. "Mathias is ... and skillset necessary to lead ArmaGen to its ...
Breaking Biology Technology: