Navigation Links
6 million years of savanna
Date:8/3/2011

SALT LAKE CITY, Aug. 3, 2011 University of Utah scientists used chemical isotopes in ancient soil to measure prehistoric tree cover in effect, shade and found that grassy, tree-dotted savannas prevailed at most East African sites where human ancestors and their ape relatives evolved during the past 6 million years.

"We've been able to quantify how much shade was available in the geological past," says geochemist Thure Cerling, senior author of a study of the new method in the Thursday, Aug. 4, 2011 issue of the journal Nature. "And it shows there have been open habitats for all of the last 6 million years in the environments in eastern Africa where some of the most significant early human fossils were found."

"Wherever we find human ancestors, we find evidence for open habitats similar to savannas much more open and savanna-like than forested," adds Cerling, a University of Utah distinguished professor of geology and geophysics, and biology.

Fossils of early humans and their ancestors and extinct relatives have been found in both wooded and open environments in East Africa. Even 4.3-million-year-old Ardipithecus which lived in the woods, according to its discoverers had a small component of tropical grasses in its diet, Cerling says.

"The fact it had some means it was going into the savanna, unless it was eating takeout food," he says.

Scientists have spent a century debating the significance of savanna landscape in human evolution, including the development of upright walking, increased brain size and tool use.

Part of the problem has been a fuzzy definition of "savanna," which has been used to describe "virtually everything between completely open grasslands and anything except a dense forest," Cerling says. He adds the most common definition is a fairly open, grassy environment with a lot of scattered trees a grassland or wooded grassland.

Open Landscapes throughout the Evolution of Humans and Their Relatives

In the new study, Cerling says he and colleagues developed "a new way to quantify the openness of tropical landscapes. This is the first method to actually quantify the amount of canopy cover, which is the basis for deciding if something is savanna."

Cerling does not dispute that East African savannas became more expansive within the past 2 million years, or that human ancestors and relatives likely spent time in narrow "gallery forests" along river corridors.

But he says the new method shows grasslands and wooded grasslands in other words, savannas have prevailed for more than 6 million years in the cradle of humanity, with tree cover less than about 40 percent at most sites. By definition, woodland has more than 40 percent tree cover, and a forest has more than 80 percent tree cover.

"In some periods, it was more bushy, and other times it was less bushy," he says. "Hardly anything could have been called a dense forest, but we can show some periods where certain environments were consistently more wooded than others. We find hominins (early humans, pre-humans and chimp and gorilla relatives) in both places. How early hominins partitioned their time between 'more open' and 'more closed' habitats is still an open question."

Cerling says even sparse woody canopy provided hominins with shade, some foods and refuge from predators.

Fossil evidence of hominins humans, their ancestors and early relatives such as chimps and gorillas date back to 4.3 million years and possibly 6 million years, Cerling says. The new method was used to look for and find savanna up to 7.4 million years ago.

"Currently, many scientists think that before 2 million years ago, things were forested [in East Africa] and savanna conditions have been present only for the past 2 million years," Cerling says. "This study shows that during the development of bipedalism [about 4 million years ago] open conditions were present," even predominant.

Cerling conducted the study with biologists Samuel Andanje and David Kimutai Korir of the Kenya Wildlife Service; geologist Michael Bird of James Cook University, Cairns, Australia; University of Utah graduate students William Mace of geology, Anthony Macharia of geography and Christopher Remien of mathematics; and former Utah geology graduate students Jonathan Wynn of the University of South Florida, Naomi Levin of Johns Hopkins University and Jay Quade of the University of Arizona.

The National Science Foundation and the Leakey Foundation funded the study.

Deducing Prehistoric Tree Cover from Soil Isotopes

The new method was developed by correlating carbon isotope ratios in 3,000 modern soil samples with satellite photos of tree and vegetation cover at 75 tropical sites worldwide half in Africa representing everything from closed forest to open grassland. That allowed scientists to determine the percent of tree and woody shrub cover millions of years ago based on carbon isotope ratios in fossil soils known as paleosols.

"This study is based on the geological axiom that the present is the key to the past," says Cerling. "We assume soils in the past had similar relationships to vegetation as what we observe today."

The researchers collected soil samples at Kenyan and Ethiopian sites and used published data on soil samples collected by others during the past decade at the other sites throughout the tropics. Modern soil samples came from national parks and reserves and non-agricultural areas so that carbon isotope rations reflected natural vegetation.

The ratio of rare carbon-13 to common carbon-12 in decayed plant material in soils reveals the extent to which the landscape was covered by plants that use what is known as the C3 pathway of photosynthesis versus plants that use C4 photosynthesis.

Trees, shrubs, herbs, forbs and cool-season grasses are C3 plants, which include beans and most vegetables. C4 plants are warm-season or tropical grasses that dominate savannas, and plants called sedges. C4 plants have a higher ratio of carbon-13 than C3 plants.

The isotope composition of fossil soil gives a measure of the total makeup of the ecosystem in terms of how much canopy versus how much open landscape, Cerling says. So in a forest, even soil from open gaps shows the C3 signature because of non-woody C3 plants growing there, while on a savanna, soil from under a C3 tree will show the C4 signature because of grasses growing under the tree.

The Findings: A History of Savanna

Cerling and colleagues used the new method to analyze fossil soils and infer plant cover back to 7.4 million years ago, a period that includes when human ancestors and apes split from a common ancestor.

Their analysis of 1,300 fossil soil samples from sites at or near where human ancestors and their relatives evolved shows that more than 70 percent of the sites had less than 40 percent woody cover, meaning they were wooded grasslands or grasslands. Less than 1 percent of the samples reflected sites where tree cover exceeded 70 percent.

"Therefore, 'closed' forests (more than 80 percent woody cover) represent a very small fraction of the environments represented by these paleosols," the researchers write.

"We conclude there have been open savannas all the time for which we have hominin fossils in the environments where the fossils were found during the past 4.3 million years" the oldest fossils now accepted as human ancestors, Cerling says.

The researchers also created vegetation chronologies of the Awash Valley of Ethiopia and the Omo-Turkana Basin of Ethiopia and Kenya home to many fossils of human ancestors, including Ardipithecus, Australopithecus, Paranthropus and our own genus, Homo.

They found that during the past 7.4 million years, woody cover ranged from 75 percent (closed woodlands) down to 5 percent or less (open grasslands), but significant areas with woody cover below 40 percent (savanna woodlands to savanna grasslands) were consistently present.


'/>"/>

Contact: Lee Siegel
lee.siegel@utah.edu
801-581-8993
University of Utah
Source:Eurekalert  

Related biology news :

1. $3 million grant to aid minorities with uncontrolled diabetes
2. CWRU receives $2.1 million NIH grant to expand cystic fibrosis research models
3. BUSM awarded $9 million to investigate treatment for sickle cell disease using iPS cells
4. 96-million-year-old fossil suggests prehistoric crocodile Terminonaris was Texas native
5. SPO Secures Equity Line Facility of US$5 Million
6. NSF sponsors $18.5 million effort to create mind-machine interface
7. Johns Hopkins researchers awarded $32 million
8. Gladstone to receive $5.6 million in federal funds to seek a cure for AIDS
9. UTMB-led researchers awarded $7.8 million for Gulf spill study
10. NIH awards $17 million Program of Excellence Award in glycosciences to Brigham and Womens Hospital
11. Parkinsons Disease Foundation announces $1 million for novel studies into Parkinsons
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
6 million years of savanna
(Date:2/3/2017)... Feb. 3, 2017  Texas Biomedical Research Institute announced that ... Larry Schlesinger as the Institute,s new President and CEO. ... May 31, 2017. He is currently the Chair of the ... Center for Microbial Interface Biology at Ohio State University. ... new President and CEO of Texas Biomed," said Dr. ...
(Date:2/1/2017)... -- IDTechEx Research, a leading provider of independent market ... of a new report, Sensors for Robotics: Technologies, Markets and ... ... ... Report "Sensors for Robotics: Technologies, Markets and Forecasts 2017-2027: Machine vision, ...
(Date:1/25/2017)... , Jan. 25, 2017 The Elements ... Management (IAM) lifecycle is comprised of a comprehensive ... the purpose of maintaining digital identities and providing ... and applications. There are significant number of programs ... time to time by optimizing processes and changing ...
Breaking Biology News(10 mins):
(Date:2/23/2017)... ATLANTA , Feb. 23, 2017  In Atlanta, it ... art, fashion, and culture intertwine to create an expressive and ... often reflect this energy and contribute to it. ... , Hair Fairies seeks to carry on that ... The Atlanta salon is the newest ...
(Date:2/23/2017)... , ... February 23, 2017 ... ... announced today that in a published evaluation of multiple immunoassay-based threat detection ... Department of Energy Laboratory, PathSensors’ CANARY® biosensor threat detection technology was found ...
(Date:2/23/2017)... , Feb. 23, 2017  Capricor Therapeutics, Inc. (NASDAQ: CAPR), ... medical conditions, today announced that Linda Marbán, Ph.D, president and ... investor conferences: Cowen and Company 37th ... am ET Boston, MA ... 9:00 am PT (12:00 pm ET) Dana Point, ...
(Date:2/22/2017)... Therapeutics, Inc. (NASDAQ: PETX), a pet therapeutics company focused on ... companion animals, will host a live conference call on Tuesday, ... results from the fourth quarter and full year ended December ... access the audio webcast or use the conference ... ...
Breaking Biology Technology: