Navigation Links
2010 DOE INCITE projects allocated at ORNL

OAK RIDGE, Tenn., Feb. 23, 2010 -- Oak Ridge National Laboratory researchers will lead projects that have been awarded a total of 251 million processor hours of computing time on supercomputers located at Oak Ridge National Laboratory and Argonne National Laboratory. These awards were made through the U.S. Department of Energy (DOE)'s Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This year, the INCITE program will make approximately 1.6 billion processor hours available to projects designed to facilitate breakthroughs in areas such as climate change, alternative energy, life sciences and materials science. The projects were selected based on peer review and evaluations of their potential to advance scientific discovery.

Jeremy Smith, a biophysicist, was awarded 25 million processor hours to run simulations that will help reveal the inner workings of lignocellulosic biomass, a raw material for biofuel production. Cellulose is a complex carbohydrate that forms the cell walls of plants and gives leaves, stalks, stems and trunks their rigidity. Figuring out how to unlock its sugar subunits, which can be fermented to produce ethanol, is an engineering challenge. Meeting that challenge could enable full use of plants for cellulosic ethanol. The simulations are designed to provide a picture of biomass that will help experimentalists design plants with new, less resistant cell walls and enzymes that break cellulose down more efficiently.

Terry Jones, computer scientist, was awarded 4 million processor hours to investigate improvements in system software on leadership class computer systems. By the end of this decade exascale computers with unprecedented processor counts and complexity will require significant new levels of scalability and fault management. As system software designed decades ago is applied to computers that comprise hundreds of thousands of processors, leadership class systems and application software face significant challenges in the areas of providing reliability, availability and serviceability, as well as in removing load imbalances and scaling bottlenecks. This project tackles these problems using adaptive system software that dynamically adjusts as needs change, thereby reducing the demands placed on application developers. More information on this project is available at:

Robert Harrison, a computational chemist, was awarded 75 million processor hours to investigate the rational design of catalysts using the reliable and accurate prediction of the electronic structure of large molecules and surfaces. Catalysts are crucial to many clean energy sources and for the development of new manufacturing processes with improved activity and selectivity. Additionally, catalytic processes are directly involved in the synthesis of 20 percent of all industrial products. The project will be used to develop a fundamental understanding of chemical transformation in several areas, including catalytic transformation of hydrocarbons; clean energy, including hydrogen production and storage; and the chemistry of transition metal clusters.

Markus Eisenbach, a computational scientist, was awarded 21 million processor hours to analyze magnetic systems and, in particular, the effect of temperature on these systems using first principles methods. By accurately revealing the magnetic properties of specific materials, the project promises to boost the understanding of magnetism in both scientifically and technologically relevant materials. This research will ultimately contribute to advances in such areas as magnetic storage and the development of motors for electric vehicles. The application that will be used to conduct this researchknown as WL-LSMSreceived the 2009 ACM Gordon Bell Prize for the world's highest-performing scientific computing application.

A team of computational astrophysicists from ORNL, the University of Tennessee, Florida Atlantic University, and North Carolina State University, led by Anthony Mezzacappa, was awarded 34 million processor hours to develop three-dimensional models of core collapse supernovae. The simulations, which will include nearly all the factors likely to be important to the supernova explosion mechanism, will mark a significant step forward in core collapse supernova theory and will position the ORNL-led team to make far more realistic predictions of key observables associated with this class of stellar explosions, such as their neutrino and gravitational wave emissions and the production of elements, such as oxygen and calcium, necessary for the origin of life on Earth.

Patrick Worley leads a team of computer scientists that was awarded 20 million processor hours to maximize the utility of leadership-class computer systems. This research focuses on four primary goals: (1) updating and extending performance evaluation of all systems; (2) making performance tools available to high-end computing users, and further developing the tools to take into account the scale and unique features of the leadership-class systems; (3) validating the effectiveness of performance-prediction technologies and modifying them as necessary to improve their utility for predicting resource requirements for production runs on the leadership-class systems; and (4) analyzing and helping to optimize current or candidate leadership-class application codes.

Researchers in ORNL's Nuclear Science and Technology Division were awarded 8 million processor hours to perform nuclear reactor simulations on Boiling Water Reactor (BWR) assemblies. This allocation will enable them to develop simulations at resolutions that were previously unobtainable. The equations governing the physics in a nuclear reactor core are very complex and require tremendous computational resources, both in terms of memory and processing speed. The proposed simulations will be the most detailed computer models ever developed for these types of assemblies. The results of these calculations will be used to determine the level of fidelity required to produce predictive reactor simulations, which is the next phase of technology development for nuclear energy modeling and simulation.

Jack Wells, a physicist, has been awarded 24 million processor hours to investigate materials that could be used to develop lithium air batteries capable of powering a car for 500 miles on a single charge. Lithium-ion batteries used in today's emerging plug-in hybrid electric vehicles currently have a range of approximately 40 to 100 miles. This research project is focused on understanding (1) the mechanisms of Lithium/Air cell discharge and recharge reactions, (2) the role and selection of catalyst and cathode surface properties, (3) the solubility of lithium ion and lithium oxides and optimization of electrolyte and (4) the reactions occurring at the electrode-electrolyte interface.


Contact: Jim Pearce
DOE/Oak Ridge National Laboratory

Related biology news :

1. Argonne advancing DOE INCITE scientific research projects
2. 2009 DOE INCITE projects allocated at ORNL
3. iQor Named to InfoWorld 100 List of Top IT Projects of 2009
4. iQor Named to InfoWorld 100 List of Top IT Projects of 2009
5. OU achieves $10 million in stimulus grants for 33 projects on the Norman campus
6. Recovery act-funded research projects aid communities across the country
7. DOE-funded research projects win 46 R&D 100 Awards for 2009
8. NIH expands Human Microbiome Project; funds sequencing centers and disease projects
9. McGill University receives almost $63 million under CFI program to support five research projects
10. Stanfords Woods Institute awards new round of Environmental Venture Projects
11. Swiss Initiative in Systems Biology launches new projects
Post Your Comments:
(Date:11/18/2015)... Nov. 18, 2015  As new scientific discoveries deepen ... and other healthcare providers face challenges in better using ... patients. In addition, as more children continue to survive ... adulthood and old age. John M. Maris, ... Hospital of Philadelphia (CHOP) . --> ...
(Date:11/17/2015)... PARIS , November 17, 2015 ... November 2015.   --> Paris from ... --> DERMALOG, the biometrics innovation leader, has invented the ... and fingerprints on the same scanning surface. Until now two ... fingerprints. Now one scanner can capture both on the same ...
(Date:11/17/2015)... 17, 2015  Vigilant Solutions announces today that Mr. ... of Directors. --> --> ... from the partnership at TPG Capital, one of the ... $140 Billion in revenue.  He founded and led TPG,s ... TPG companies, from 1997 to 2013.  In his first ...
Breaking Biology News(10 mins):
(Date:11/27/2015)... (PRWEB) , ... November 27, 2015 , ... ... Program that includes over 2,000 technical presentations offered in symposia, oral sessions, ... and applied spectroscopy, covers a wide range of applications such as, but not ...
(Date:11/26/2015)... November 26, 2015 ... Accutest Research Laboratories, a leading ... Organization (CRO), has formed a strategic ... - Temple Health for joint work ... (Photo: ) , --> ...
(Date:11/25/2015)... , November 26, 2015 ... Global Biobanking Market 2016 - 2020 report analyzes ... maintaining integrity and quality in long-term samples, minimizing ... long-term cost-effectiveness. Automation minimizes manual errors such as ... technical efficiency. Further, it plays a vital role ...
(Date:11/25/2015)... 2 nouvelles études permettent d , identifier ... souches bactériennes retrouvées dans la plaque dentaire des ... Ces recherches  ouvrent une nouvelle voie ... l,un des problèmes de santé les plus fréquemm ... --> 2 nouvelles études permettent d , ...
Breaking Biology Technology: