Navigation Links
2 for 1 in solar power
Date:11/17/2013

Solar cells offer the opportunity to harvest abundant, renewable energy. Although the highest energy light occurs in the ultraviolet and visible spectrum, most solar energy is in the infrared. There is a trade-off in harvesting this light, so that solar cells are efficient in the infrared but waste much of the energy available from the more energetic photons in the visible part of the spectrum.

When a photon is absorbed it creates a single electronic excitation that is then separated into an electron and a positively charged hole, irrespective of the light energy. One way to improve efficiency is to split energy available from visible photons into two, which leads to a doubling of the current in the solar cell.

Researchers in Cambridge and Mons have investigated the process in which the initial electronic excitation can split into a pair of half-energy excitations. This can happen in certain organic molecules when the quantum mechanical effect of electron spin sets the initial spin 'singlet' state to be double the energy of the alternative spin 'triplet' arrangement.

The study, published today in the journal Nature Chemistry, shows that this process of singlet fission to pairs of triplets depends very sensitively on the interactions between molecules. By studying this process when the molecules are in solution it is possible to control when this process is switched on.

When the material is very dilute, the distance between molecules is large and singlet fission does not occur. When the solution is concentrated, collisions between molecules become more frequent. The researchers find that the fission process happens as soon as just two of these molecules are in contact, and remarkably, that singlet fission is then completely efficientso that every photon produces two triplets.

This fundamental study provides new insights into the process of singlet fission and demonstrates that the use of singlet fission is a very promising route to improved solar cells. Chemists will be able to use the results to make new materials, say the team from Cambridge's Cavendish Laboratory, who are currently working on ways to use these solutions in devices.

"We began by going back to fundamentals; looking at the solar energy challenge from a blue skies perspective," said Dr Brian Walker, a research fellow in the Cavendish Lab's Optoelectronics group, who led the study.

"Singlet fission offers a route to boosting solar cell efficiency using low-cost materials. We are only beginning to understand how this process works, and as we learn more we expect improvements in the technology to follow."

The team used a combination of laser experiments - which measure timings with extreme accuracy - with chemical methods used to study reaction mechanisms. This dual approach allowed the researchers to slow down fission and observe a key intermediate step never before seen.

"Very few other groups in the world have laser apparatus as versatile as ours in Cambridge," added Andrew Musser, a researcher who collaborated in the study. "This enabled us to get a step closer to working out exactly how singlet fission occurs."


'/>"/>

Contact: Brian Walker
bjw53@cam.ac.uk
44-758-707-6777
University of Cambridge
Source:Eurekalert  

Related biology news :

1. A new dimension for solar energy
2. Folding light: Wrinkles and twists boost power from solar panels
3. Climatic effects of a solar minimum
4. Bay Area PV Consortium announces $7.5 million in grants to lower the cost of large-scale solar
5. Weizmann Institute solar technology to convert greenhouse gas into fuel
6. Anti-aging elixir for solar cells
7. ASU awarded $3 million to research solar energy technologies, launch energy Ph.D. program
8. Microwave ovens may help produce lower cost solar energy technology
9. The George Washington University Researcher received $1.7 million to study solar cement
10. Stanford scientists build the first all-carbon solar cell
11. Rice unveils super-efficient solar-energy technology
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
2 for 1 in solar power
(Date:4/11/2017)... , Apr. 11, 2017 Research and ... Market 2017-2021" report to their offering. ... The global eye tracking market to grow at a ... report, Global Eye Tracking Market 2017-2021, has been prepared based on ... covers the market landscape and its growth prospects over the coming ...
(Date:4/5/2017)... NEW YORK , April 5, 2017 ... security, is announcing that the server component of the ... is known for providing the end-to-end security architecture that ... customers. HYPR has already secured over 15 ... system makers including manufacturers of connected home product suites ...
(Date:3/30/2017)... KONG , March 30, 2017 The ... a system for three-dimensional (3D) fingerprint identification by adopting ground breaking ... into a new realm of speed and accuracy for use in ... at an affordable cost. ... ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... Oct. 10, 2017 International research firm Parks Associates ... speak at the TMA 2017 Annual Meeting , October 11 in ... the residential home security market and how smart safety and security products ... Parks Associates: Smart ... "The residential security market ...
(Date:10/10/2017)... ... October 10, 2017 , ... USDM Life Sciences ... the life sciences and healthcare industries, announces a presentation by Subbu Viswanathan and ... presentation, “Automating GxP Validation for Agile Cloud Platforms,” will present a revolutionary approach ...
(Date:10/9/2017)... , Oct. 9, 2017  BioTech Holdings ... mechanism by which its ProCell stem cell therapy ... limb ischemia.  The Company, demonstrated that treatment with ... of limbs saved as compared to standard bone ... molecule HGF resulted in reduction of therapeutic effect.  ...
(Date:10/9/2017)... ... October 09, 2017 , ... At its national board meeting in North Carolina, ... Harvard University’s Departments of Physics and Astronomy, has been selected for membership in ... team for the 2015 Breakthrough Prize in Fundamental physics for the discovery of the ...
Breaking Biology Technology: