Navigation Links
2 for 1 in solar power
Date:11/17/2013

Solar cells offer the opportunity to harvest abundant, renewable energy. Although the highest energy light occurs in the ultraviolet and visible spectrum, most solar energy is in the infrared. There is a trade-off in harvesting this light, so that solar cells are efficient in the infrared but waste much of the energy available from the more energetic photons in the visible part of the spectrum.

When a photon is absorbed it creates a single electronic excitation that is then separated into an electron and a positively charged hole, irrespective of the light energy. One way to improve efficiency is to split energy available from visible photons into two, which leads to a doubling of the current in the solar cell.

Researchers in Cambridge and Mons have investigated the process in which the initial electronic excitation can split into a pair of half-energy excitations. This can happen in certain organic molecules when the quantum mechanical effect of electron spin sets the initial spin 'singlet' state to be double the energy of the alternative spin 'triplet' arrangement.

The study, published today in the journal Nature Chemistry, shows that this process of singlet fission to pairs of triplets depends very sensitively on the interactions between molecules. By studying this process when the molecules are in solution it is possible to control when this process is switched on.

When the material is very dilute, the distance between molecules is large and singlet fission does not occur. When the solution is concentrated, collisions between molecules become more frequent. The researchers find that the fission process happens as soon as just two of these molecules are in contact, and remarkably, that singlet fission is then completely efficientso that every photon produces two triplets.

This fundamental study provides new insights into the process of singlet fission and demonstrates that the use of singlet fission is a very promising route to improved solar cells. Chemists will be able to use the results to make new materials, say the team from Cambridge's Cavendish Laboratory, who are currently working on ways to use these solutions in devices.

"We began by going back to fundamentals; looking at the solar energy challenge from a blue skies perspective," said Dr Brian Walker, a research fellow in the Cavendish Lab's Optoelectronics group, who led the study.

"Singlet fission offers a route to boosting solar cell efficiency using low-cost materials. We are only beginning to understand how this process works, and as we learn more we expect improvements in the technology to follow."

The team used a combination of laser experiments - which measure timings with extreme accuracy - with chemical methods used to study reaction mechanisms. This dual approach allowed the researchers to slow down fission and observe a key intermediate step never before seen.

"Very few other groups in the world have laser apparatus as versatile as ours in Cambridge," added Andrew Musser, a researcher who collaborated in the study. "This enabled us to get a step closer to working out exactly how singlet fission occurs."


'/>"/>

Contact: Brian Walker
bjw53@cam.ac.uk
44-758-707-6777
University of Cambridge
Source:Eurekalert  

Related biology news :

1. A new dimension for solar energy
2. Folding light: Wrinkles and twists boost power from solar panels
3. Climatic effects of a solar minimum
4. Bay Area PV Consortium announces $7.5 million in grants to lower the cost of large-scale solar
5. Weizmann Institute solar technology to convert greenhouse gas into fuel
6. Anti-aging elixir for solar cells
7. ASU awarded $3 million to research solar energy technologies, launch energy Ph.D. program
8. Microwave ovens may help produce lower cost solar energy technology
9. The George Washington University Researcher received $1.7 million to study solar cement
10. Stanford scientists build the first all-carbon solar cell
11. Rice unveils super-efficient solar-energy technology
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
2 for 1 in solar power
(Date:4/5/2017)... SEATTLE , April 5, 2017  The Allen ... the Allen Cell Explorer: a one-of-a-kind portal and dynamic ... large-scale 3D imaging data, the first application of deep ... edited human stem cell lines and a growing suite ... the platform for these and future publicly available resources ...
(Date:4/5/2017)... -- KEY FINDINGS The global market for ... of 25.76% during the forecast period of 2017-2025. The ... the growth of the stem cell market. ... INSIGHTS The global stem cell market is segmented on ... stem cell market of the product is segmented into ...
(Date:4/3/2017)... , April 3, 2017  Data ... precision engineering platform, detected a statistically significant ... product prior to treatment and objective response ... the potential to predict whether cancer patients ... to treatment, as well as to improve ...
Breaking Biology News(10 mins):
(Date:6/22/2017)... ... June 21, 2017 , ... Building on the success of the inaugural RAADfest ... the very latest developments in radical life extension. RAADfest combines cutting edge science presented ... empowerment of personal development, making it the largest most comprehensive and inclusive super longevity ...
(Date:6/22/2017)... , ... June 22, 2017 , ... ... network RegMedNet has produced a Spotlight series on “Cell ... reviews and perspectives by leading experts on the unique regulatory challenges of stem ...
(Date:6/22/2017)... ... June 22, 2017 , ... RURO, Inc., ... Limfinity® version 6.5, a content-packed update to the Limfinity® framework. , LimitLIS® and ... and more diverse base of customers among labs and other businesses. Limfinity® 6.5 ...
(Date:6/20/2017)... ... ... Biologist Dawn Maslar MS has found a biomarker that she claims verifies ... The Neuroscience of Meeting, Dating, Losing Your Mind, and Finding True Love, Maslar found ... step, in my estimation, was to scientifically track the evidence of commitment in men,” ...
Breaking Biology Technology: