Navigation Links
2 brain halves, 1 perception
Date:9/1/2011

Our brain is divided into two hemispheres, which are linked through only a few connections. However, we do not seem to have a problem to create a coherent image of our environment our perception is not "split" in two halves. For the seamless unity of our subjective experience, information from both hemispheres needs to be efficiently integrated. The corpus callosum, the largest fibre bundle connecting the left and right side of our brain, plays a major role in this process. Researchers from the Max Planck Institute for Brain Research in Frankfurt investigated whether differences between individuals in the anatomy of the corpus callosum would predict how observers perceive a visual stimulus for which the left and right hemisphere need to cooperate. As their results indicate, the characteristics of specific callosal fibre tracts are related to the subjective experience of individuals.

In their study, Erhan Gen and colleagues used a motion illusion, called the "motion quartet", which can be perceived in two different ways. The "motion quartet" induces the phenomenon of apparent motion, where the impression of motion is caused by a sequence of static stimuli. This is similar to movies in TV or cinema, which consist of a sequence of still pictures that nevertheless generate a perception of natural dynamics. In the experiments, the stimuli are made up of four white squares in a rectangular arrangement. There are only two alternating movie frames with two pairs of diagonally opposing squares (upper left plus lower right vs. upper right plus lower left). In this case, observers see either horizontal or vertical motion; sometimes their perception switches between the two interpretations, although the stimulus remains unchanged.

Interestingly, it has been found that individuals predominantly perceive vertical motion when the distance between the four squares is equal and observers fixate at the centre of the quartet. Due to the organization of the visual system, visual information has to be integrated across the two hemispheres for horizontal apparent motion, whereas vertical apparent motion is processed only within the respective contralateral hemispheres. This explains the prevalence of vertical motion perception because the transfer across hemispheres takes longer than intra-hemispheric communication. However, "there are large inter-individual differences in this prevalence", adds Erhan Gen, who conducted the study in collaboration with Johanna Bergmann, Wolf Singer and Axel Kohler. "Our goal was therefore to examine whether these perceptual differences are due to differences in microstructural properties of the corpus callosum, the fibre system that connects the two cerebral hemispheres".

For this purpose, the researchers determined the individual parity ratio for each of their participants. This measure reflects the equilibrium point for the motion quartet, where people perceive both motion directions equally often. In most participants, the parity ratio is below 1, as the horizontal distance needs to be smaller than the vertical to result in even visibility of horizontal and vertical motion. Retests proved that the estimated values were reproducible over a time period of 16 weeks, demonstrating that the parity ratio is a stable characteristic of the observers' ability to integrate information across the two hemispheres. In addition, diffusion tensor imaging (DTI) was used to measure the features of fibre tracts in the corpus callosum. DTI was performed in the magnetic-resonance-imaging scanner of the Brain Imaging Center Frankfurt. The scanner uses the diffusion of water molecules as an indicator of fibre-tract integrity.

Analyses revealed that the properties of specific fibre tracts connecting regions specialized for visual motion processing could predict observers' individual parity ratio. "It seems that participants with a faster nerve-conduction velocity mediated through larger diameters of nerve fibres are better at integrating visual information across both hemispheres", explains Axel Kohler. Importantly, this relationship was restricted to visual motion centres. Neighbouring fibre tracts in the visual system connecting areas specialized for other stimulus features were not associated with the parity ratio.

"It is fascinating to see how closely inter-individual differences in conscious perception are linked to differences in the architecture of the brain" comments Erhan Gen. The experiments establish how considerably anatomical differences in the layout of connections influence even very basic sensory processes, especially when communication across the brain hemispheres is required. Future research will investigate whether similar effects can be found for other visual features or sensory modalities, and whether other connections between the hemispheres outside the corpus callosum also determine our individual subjective experience.


'/>"/>

Contact: Erhan Gen
erhan.genc@brain.mpg.de
49-699-676-9471
Max-Planck-Gesellschaft
Source:Eurekalert

Related biology news :

1. Localizing language in the brain
2. Bilingual babies vocabulary linked to early brain differentiation
3. Clinical study shows young brains lack the wisdom of their elders
4. Headaches are common in year following traumatic brain injury, especially among females
5. Children of depressed mothers have a different brain
6. Stanford engineers redefine how the brain plans movement
7. Brains map of space falls flat when it comes to altitude
8. Novel analysis by Allen Institute sheds new light on the mechanisms of brain development
9. Aging brains are different in humans and chimpanzees
10. UMD brain cap technology turns thought into motion
11. Exercise has numerous beneficial effects on brain health and cognition, review suggests
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/7/2016)... to a new market research report "Emotion Detection and Recognition Market by Technology ... End User, And Region - Global Forecast to 2021", published by MarketsandMarkets, the ... USD 36.07 Billion by 2021, at a Compound Annual Growth Rate (CAGR) of ... ... MarketsandMarkets Logo ...
(Date:12/7/2016)... 2016   Avanade is helping Williams Martini ... in history, exploit biometric data in order to critically ... the competitive edge against their rivals after their impressive, ... Avanade has worked with Williams during the 2016 season ... (heart rate, breathing rate, temperature and peak acceleration) for ...
(Date:12/6/2016)... Dec. 6, 2016  Zimmer Biomet Holdings, Inc. (NYSE and ... an offering of €500.0 million principal amount of its 1.414% ... of its 2.425% senior unsecured notes due 2026. ... on December 13, 2016, subject to the satisfaction of customary closing ... The Company intends to use ...
Breaking Biology News(10 mins):
(Date:1/12/2017)... (PRWEB) , ... January 12, ... ... disposable devices with short response times capable of performing routine electrochemical biosensing ... disposable screen-printed electrodes provide fast, sensitive detection and quantification of various analytes ...
(Date:1/12/2017)... 12, 2017   Protein Sciences Corporation , ... Flublok Influenza Vaccine ®, announced today that ... good safety results and induced strong neutralizing antibodies ... product is expected to advance into human clinical ... the Institute of Technology in Immunobiologicals of the ...
(Date:1/11/2017)... ... January 11, 2017 , ... Phase ... show early promise of the investigational anti-cancer agent tucatinib (formerly ONT-380) against HER2+ ... treatment regimens. Twenty-seven percent of these heavily pretreated patients saw clinical benefit from ...
(Date:1/11/2017)... -- Brian Mehling, M.D., world-renowned stem cell researcher, board-certified orthopedic ... will be attending the 47th Annual World Economic Forum ... 17-20, 2017. This will be Dr. Mehling,s fifth year ... this year,s forum is Responsive and Responsible Leadership; over ... for fostering greater social inclusion and human development. One-third ...
Breaking Biology Technology: