Navigation Links
1 step closer to closure

Spinal cord disorders like spina bifida arise during early development when future spinal cord cells growing in a flat layer fail to roll up into a tube. In the Dec. 6 issue of Nature Cell Biology, researchers from the Johns Hopkins University School of Medicine team with colleagues at the University of California, Berkeley to report a never-before known link between protein transport and mouse spinal cord development, a discovery that opens new doors for research on all spinal defects.

"What I love about this discovery is the total surprise we never before would have linked defects in the protein-secretion machinery and neural tube closure," says David Ginty, Ph.D., professor of neuroscience and Howard Hughes Medical Institute investigator.

The team originally set out to find new genes that instruct proper wiring of the hundred billion neurons in the nervous system. To do that, they randomly generated mutations in mouse genes, bred the mice and examined offspring for defects in nervous system development. One of the thousands of mouse embryos examined by graduate student Janna Merte had a spinal cord that had failed to close into a tube. Whereas conditions like spina bifida arise from failure of the tail end of the spinal cord to close, these new mice had a more severe condition, where the entire length of the spinal tube had failed to close.

Intrigued, Janna then identified the mutated gene in this mouse as Sec24b, a gene already known to play a role in the process where cells package newly made proteins that are destined to be delivered to the cell membrane or sent to the outside of the cell. But all genes known to instruct normal spinal tube closure are known to orient cells in a flat sheet, similar to patterning of the hair follicles in skin.

"We didn't really know what to do with Sec24b at first," says Ginty. His team consulted and eventually teamed up with Berkeley professor Randy Schekman, who discovered the Sec24 gene in yeast.

Another gene, Vangl2, when mutated causes remarkably similar defects in spinal closure, so the team set out to see if Vangl2 and Sec24b interact with each other. They first engineered mice to contain mutations in both genes and found that 68 percent of mice had spina bifida and more than half of the mice died within four weeks after birth, strongly suggesting the two genes interact with each other.

Because both proteins are involved in neural tube closure, the team reasoned that perhaps mutations in Sec24b might affect the packaging of Vangl2. Mixing cell components and Vangl2 in a test tube, the team added either Sec24b or other related proteins. Only tubes containing Sec24b were able to package Vangl2; other related proteins could not. The team showed that even small changes in the Vangl2 protein prevented Sec24b from properly sorting Vangl2. Instead, Vangl2 was found clumped inside the cell.

Proper cell patterning, explains Ginty, probably is established with very early stage cellular processes that regulate protein production and transport. And the high prevalence of spina bifida in mice with altered Sec24b and Vangl2 suggests that defects in Sec24b and perhaps other Sec genes might be at the root of spinal cord defects in humans. "It will be interesting to see if that is in fact the case," he says.


Contact: Audrey Huang
Johns Hopkins Medical Institutions

Related biology news :

1. Gene regulation in humans is closer than expected to simple organisms
2. UK scientists lead China closer to carbon capture and storage
3. Cheaper drugs now closer to realization with new DropArray technology
4. Researchers move 2 steps closer to understanding genetic underpinnings of autism
5. Bees disease -- 1 step closer to finding a cure
6. Footrot vaccine closer than ever
7. Scientists a step closer to producing fuel from bacteria
8. Green chemicals closer to market
9. Study finds DNA barcoding requires caution without closer examination
10. Scientists closer to developing salt-tolerant crops
11. Scientists closer to making implantable bone material, thanks to new research
Post Your Comments:
(Date:11/4/2015)... 4, 2015 --> ... published by Transparency Market Research "Home Security Solutions Market - ... 2015 - 2022", the global home security solutions market is expected ... 2022. The market is estimated to expand at a ... to 2022. Rising security needs among customers at homes, ...
(Date:10/29/2015)... Daon, a global leader in mobile biometric ... new version of its IdentityX Platform , IdentityX ... have already installed IdentityX v4.0 and are ... FIDO UAF certified server component as an option ... features. These customers include some of the largest and ...
(Date:10/29/2015)... NEW YORK , Oct. 29, 2015 /PRNewswire/ ... wearable technology, announced a partnership with 2XU, a ... accessories, to deliver a smart hat with advanced ... runners and other athletes to monitor key biometrics ... of the strategic partnership, the two companies will bring ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... , Nov. 24, 2015 /PRNewswire/ - Aeterna ... announced today that the remaining 11,000 post-share consolidation ... Purchase Warrants (the "Series B Warrants") subject to ... exercised on November 23, 2015, which will result ... After giving effect to the issuance of such ...
(Date:11/24/2015)... ... November 24, 2015 , ... ... are paramount. Insertion points for in-line sensors can represent a weak spot where ... InTrac 781/784 series of retractable sensor housings , which are designed to tolerate ...
(Date:11/24/2015)... Vancouver, BC (PRWEB) , ... November 24, 2015 ... ... to our customer, OrthoAccel® Technologies, Inc., on being named to Deloitte's 2015 Technology ... Creation Technologies’ Texas facility, OrthoAccel manufactures AcceleDent®, a FDA-cleared, Class II medical device ...
(Date:11/24/2015)... 24, 2015 Capricor Therapeutics, Inc. ... the discovery, development and commercialization of first-in-class therapeutics, today ... Officer, is scheduled to present at the 2015 Piper ... a.m. EST, at The Lotte New York Palace Hotel ... . --> . ...
Breaking Biology Technology: