Navigation Links
Novel gene increases yeast's appetite for plant sugars
Date:7/26/2011

MADISON For thousands of years, bakers and brewers have relied on yeast to convert sugar into alcohol and carbon dioxide. Yet, University of Wisconsin-Madison researchers eager to harness this talent for brewing biofuels have found when it comes to churning through sugars, these budding microbes can be picky eaters.

Published online this week in the Proceedings of the National Academy of Sciences, a Great Lakes Bioenergy Research Center team identified several new genes that improve yeast's ability to use xylose, a five-carbon sugar that can make up nearly half of available plant sugars. If researchers can coax yeast into using most of these sugars, they can improve the efficiency of producing renewable fuels from biomass crops like corn stover or switchgrass.

"Strains of yeast that are currently used for biofuel production convert xylose to ethanol slowly and inefficiently, and only do so after all the glucose is exhausted," says the study's lead author Dana Wohlbach, a postdoctoral researcher at UW-Madison. "For industrial purposes, the faster a yeast can consume the sugars, the better, since more sugar consumption means more ethanol."

The team partnered with the Department of Energy Joint Genome Institute and sequenced the genomes of two types of fungi that reside in the habitats of bark beetles. Since woody biomass like bark contains a lot of xylose, these fungi were well adapted at using this type of sugar to both grow and also provide nutrients for the beetles.

Applying the power of comparative genomics to fungal ecology, scientists were able to rapidly identify genes that have potential for improving biomass conversion.

"By comparing the genome sequences and expression patterns of many yeasts rather than just looking at one we were able to identify elements common to all xylose-fermenting yeasts, and elements absent from non-xylose fermenting yeasts," says Wohlbach.

The team then introduced several genes into S. cerevisiae, which cannot normally consume xylose. By introducing one gene in particular, named CtAKR, the researchers significantly increased xylose consumption, an important step for economic biofuel production from plant material.

"This research has provided us with a great genomic toolset," says Wohlbach. "We're excited to explore new ways to increase yeast's ability to consume xylose and improve ethanol production for cellulosic biofuels."


'/>"/>

Contact: Margaret Broeren
mbroeren@glbrc.wisc.edu
608-890-2168
University of Wisconsin-Madison
Source:Eurekalert

Related biology news :

1. Scientists identify novel inhibitor of human microRNA
2. Conaway Lab identifies novel mechanism for regulation of gene expression
3. LIAI launches new division to look at novel approaches to heart disease and inflammation
4. Childrens National researchers develop novel anti-tumor vaccine
5. Cold Spring Harbor Laboratory scientists trace a novel way cells are disrupted in cancer
6. Novel publishing approach puts textbook in more hands
7. GEN reports on novel tools for deciphering biological networks
8. UT Southwestern researcher awarded Gates Foundation grant for novel vaccine development
9. 3-substituted indolones as novel therapeutic compounds for neurodegenerative conditions
10. Corn researchers discover novel gene shut-off mechanisms
11. A novel target for therapeutics against Staph infection
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/18/2016)... , March 18, 2016 ... Suppliers of Biometrics, ICT, Manned & Unmanned Vehicles, Physical infrastructure ... & security companies in the border security market and the ... and Europe has led visiongain ... companies improved success. --> defence & security ...
(Date:3/15/2016)... JERUSALEM , March 15, 2016 ... Jerusalem , the technology-transfer company of the Hebrew University, ... developer of remote sensing technology of various human biological ... funding, raising $2.0 million from private investors. ... technology, based on the detection of electromagnetic emissions from ...
(Date:3/11/2016)... http://www.apimages.com ) - --> http://www.apimages.com ) - ... ( http://www.apimages.com ) - Germany . The ... refugee identity cards. DERMALOG will be unveiling this device, and a ... next week.   --> Germany . ... new refugee identity cards. DERMALOG will be unveiling this device, and ...
Breaking Biology News(10 mins):
(Date:5/3/2016)... ... , ... According to world renowned prostate cancer surgeon, Dr. David B. ... two main treatment options: surgery or radiation. Based on a patient’s goals, disease state, ... enabled doctors to administer higher doses of radiation to prostate cancer patients ...
(Date:5/2/2016)... ... 02, 2016 , ... Meister Media Worldwide launches its new ... added functionality give the agricultural world a taste of Meister Media Worldwide’s full ... – from precision farming via satellites and Unmanned Aerial Vehicles (UAVs) to indoor ...
(Date:4/29/2016)... (PRWEB) , ... April 30, 2016 , ... The MIT ... textile design, the bioLogic team explored how bacterial properties can be applied to fabric ... using Natto bacteria, which move in response to humidity change. The team harvested Natto ...
(Date:4/29/2016)... York , April 29, 2016 ... published by Transparency Market Research "Separation Systems for ... Share, Growth, Trends, and Forecast 2015 - 2023", ... valued at US$ 10,665.5 Mn in 2014 and ... 6.8% from 2015 to 2023 to reach US$ ...
Breaking Biology Technology: