Navigation Links
£6.5M in funding to help manufacture the drugs of the future
Date:2/5/2013

More than 6M of funding has been awarded to enhance the development of biopharmaceuticals.

In total 6.5M will fund 12 projects to deliver commercially important results, such as industrial-scale production of antibodies, stem cell preservation at room temperature, biopharmaceutical production using microbes and commercial scale stem cell therapy.

The funding is the second round of awards from Phase 2 of the Bioprocessing Research Industry Club (BRIC), a partnership between the Biotechnology and Biological Sciences Research Council (BBSRC), the Engineering and Physical Sciences Research Council (EPSRC), a consortium of leading companies and HealthTech and Medicines Knowledge Transfer Network.

Bioprocessing is the use of living cells or their components (e.g. enzymes) to manufacture desirable products. The innovative projects will investigate new tools and methods for bioprocessing which will be of particular benefit to the biopharmaceutical sector, where developing new drugs is often slow, expensive and complicated.

The UK biopharmaceutical sector comprises over 250 companies and it is forecast that, by 2016, eight of the top ten 'blockbuster' medicines will be biologics rather than conventional small molecules. The sector is of huge importance to the UK economy.

The new research will take place at nine UK universities. BRIC-funded research addresses bioprocesses at all scales of operation, from the small amounts required for pre-clinical studies through to post-licence mass manufacture.

Priority areas for BRIC research include bioprocessing for protein products and their host cell producers, high-throughput bioprocess development, effective modelling of whole bioprocesses, robust and effective analytics for bioprocessing and bioprocessing research for cellular products.

Dr Celia Caulcott, BBSRC Director, Innovation and Skills, said: "This latest investment in bioprocessing research through BRIC will further enhance our ability to manufacture the biopharmaceuticals of the future in an efficient and sustainable way. It is a timely prelude to our continuing support for bioprocessing research under our Industrial Biotechnology and Bioenergy Strategy."

Mr Atti Emecz, EPSRC Director Strategy and Business Relationships, said: "This investment demonstrates the value of the BRIC approach. It draws together bioscience, chemistry and engineering to tackle multidisciplinary challenges and promote internationally excellent research. It also develops the valuable partnerships with industry needed to deliver impact."

Ten BRIC Studentships have also been funded by BBSRC to help develop the bioprocessing researchers of the future. This brings the total number of BRIC students to 28, each with a collaborating BRIC member company.

BRIC Studentships are collaborative training grants, which follow the Industrial CASE model, giving these top bioprocessing PhD students the chance to experience first-rate research at both an academic institution and within an industrial setting.

The ten studentships will start in the 2013/14 academic year, and last for up to four years, based at five UK universities in partnership with six collaborating companies/organisations.

Students will spend a minimum of three months in a placement with the industrial partner learning skills that they will not necessarily acquire during a standard doctoral programme.

As well as providing high-quality training the scheme develops networking links between students, academia and industry.

The programme complements the EPSRC-funded Doctoral Training Centres at Newcastle and UCL that are relevant to the bioprocessing sector and other EPSRC studentship investments, by supporting training with a biosciences focus.

The funded BRIC research projects are:

  • Application of ATR-FTIR imaging to industrial scale production of therapeutic antibodies. Imperial College London.
    • Use of Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy will allow researchers to investigate the most effective techniques to isolate biopharmaceuticals during production processes.

  • Investigation of optimal gel conditions for stem cell preservation at room temperature and scaling up of selected methodology. University of Reading.
    • Research building on previous BRIC-funded work into using semi-permeable hydrogels to viably transport living biologic material at room temperature.

  • Multi-modal fluorescence spectroscopy for online analysis of proteins in bioprocesses. University College London.
    • This technique has potential to offer a sophisticated way of sensitively monitoring the purity of harvested proteins in real time.

  • Application of single cell metabolite profiling to optimisation of stem cell bioprocessing. The University of Manchester.
    • This work will seek to take "fingerprints" of the metabolism of individual stem cells, to relate each "fingerprint" with the controlling events that determine whether a cell becomes nerve, liver or pancreas cell for example. The information will help identify processes for maintenance of types of cells and to select for cells with a particular functional state.

  • Development of nanopatterned substrates for the delivery of high quality stem cells. University of Glasgow.
    • Developing previous work demonstrating stem cells can be cultured on a nanopatterned surface and retain their regenerative potential, researchers will grow stem cells on 1,000 different patterns to investigate their ability to influence the fate of the stem cells.

  • Expansion of human mesenchymal stem cells in aqueous / aqueous two phase systems. Loughborough University.
    • Combining the expertise of biologists and engineers to create scalable systems for the "manufacture" of large numbers of stem cells so the potential of stem cell therapies can be realised.

  • Linking recombinant gene sequence to protein product manufacturability using CHO cell genomic resources. University of Sheffield.
    • Bioinformatics and mathematics will be used to assess how efficiently mammalian cells can be used to harvest proteins manufacture specific proteins. This information will be used to create "design rules" that genetic engineers and cell factory developers can employ to design the most effective genetic code for a given protein product, and predict how much the mammalian cell factory can make.

  • Development of an integrated continuous process for recombinant protein production using Pichia pastoris. University of Cambridge.
    • Building on previous BRIC funding, the research will investigate an efficient way to ensure continuous target protein production in the yeast Pichia pastoris.

  • Development of new-generation bacterial secretion process platforms. University of Warwick.
    • Research will investigate a pathway to export target proteins manufactured in bacteria such as E. coli which offers potential for exporting proteins that the other pathways cannot support, and enable refinement of products of particularly high quality.

  • Commercial scale manufacture of adult allogeneic cell therapy University College London.
    • Universal cell lines of olfactory ensheathing cells will be cultured and assessed for regeneration potential.

  • Improving biopharmaceutical production in microbial systems: engineering GlycoPEGylation in E. coli. University of Sheffield.
    • Researchers will aim to produce an example therapeutic protein in the bacterium E. coli that can be purified and efficiently modified to improve its biological and physical characteristics and thus overall effectiveness.

  • Bioprocessing of high concentration protein solutions: quality by digital design approach. The University of Manchester.
    • The research will develop methods to screen protein formulations for viscosity and other flow properties, using small quantities of protein. This has potential applications in the development of medicines that can be self-injected by patients at home.


'/>"/>

Contact: Chris Melvin
press.office@bbsrc.ac.uk
44-179-341-4694
Biotechnology and Biological Sciences Research Council
Source:Eurekalert

Related biology news :

1. Chronic disease research awarded funding
2. Lake Erie wind farm proposal wins $4 million in federal funding
3. 23andMe scientists receive more than $500,000 in National Institutes of Health funding
4. Clinician-scientists at The Neuro receive funding for Parkinsons and HIV research
5. £12 million funding to tackle devastating livestock and poultry viruses
6. University spin-out company shares in £7.9 million marine energy funding boost
7. State stem cell research funding agency awards $37.3 million to aid UC Irvine efforts
8. 2 pioneering plant genomics efforts given a funding boost by National Science Foundation
9. University of Minnesota receives $13.1 million in DOE funding for 2 new nationwide centers
10. Space research institute awards funding to promising medical products
11. House funding bill will delay research progress and place new burdens on NIH
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/24/2017)... -- Janice Kephart , former 9/11 Commission ... LLP (IdSP) , today issues the following statement: ... 6, 2017 Executive Order: Protecting the Nation ... instilled with greater confidence, enabling the reactivation of ... are suspended by until at least July 2017). ...
(Date:4/18/2017)... , April 18, 2017  Socionext Inc., a global expert ... a media edge server, the M820, which features the company,s hybrid ... software provided by Tera Probe, Inc., will be showcased during the ... the NAB show at the Las Vegas ... ...
(Date:4/13/2017)... , April 13, 2017 UBM,s Advanced ... will feature emerging and evolving technology through ... Innovation Summits will run alongside the expo portion of ... sessions, panels and demonstrations focused on trending topics within ... advanced design and manufacturing event will take place June ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... 12, 2017 , ... AMRI, a global contract research, development ... patient outcomes and quality of life, will now be offering its impurity solutions ... new regulatory requirements for all new drug products, including the finalization of ICH ...
(Date:10/11/2017)... YORBA LINDA, CA (PRWEB) , ... October 11, ... ... adapted to upregulate any gene in its endogenous context, enabling overexpression experiments and ... activation (CRISPRa) system with small RNA guides is transformative for performing systematic gain-of-function ...
(Date:10/11/2017)... ... 2017 , ... Proscia Inc ., a data solutions ... “Pathology is going digital. Is your lab ready?” with Dr. Nicolas Cacciabeve, Managing ... how Proscia improves lab economics and realizes an increase in diagnostic confidence.* ...
(Date:10/11/2017)... ... October 11, 2017 , ... Disappearing forests and increased emissions ... over 5.5 million people each year. Especially those living in larger cities are affected ... based in one of the most pollution-affected countries globally - decided to take action. ...
Breaking Biology Technology: