Navigation Links
$2.3 million in NIH funding for promising cancer research at Cincinnati Children's

CINCINNATI Two scientific teams at Cincinnati Children's Hospital Medical Center are receiving a total of $2.3 million in research funding from the National Institutes of Health (NIH) to continue promising studies seeking novel treatments for leukemia and bone marrow failure.

A team led by Yi Zheng, Ph.D., and James Mulloy, Ph.D., is getting a five-year grant totaling $1.04 million from NIH's National Cancer Institute entitled, "Targeting CDC42 in Leukemia Stem Cells." Qishen Pang, Ph.D., and colleagues are being awarded a five-year grant totaling $1.25 million from the National Heart, Lung and Blood Institute entitled, "Role of FA Protein Complexes in Hematopoiesis."

The scientists are all part of the Cancer and Blood Diseases Institute at Cincinnati Children's and its divisions of Experimental Hematology/Cancer Biology and Hematology/Oncology. Dr. Zheng is director of Experimental Hematology/Cancer Biology.

Research into CDC42 involves a protein that normally is crucial to cell adhesion, survival and migration. Scientists have learned that under certain conditions CDC42 stimulates development of disease initiating cells in bone marrow and leukemia stem cells, which they believe can fuel prolonged disease, relapse and mortality. The research team has been studying this process in Acute Myeloid Leukemia (AML), a complex blood cancer that often suffers from relapse after conventional chemotherapy treatment.

Ongoing studies of mice bred to model human leukemia including a novel mouse model of AML developed by Dr. Mulloy's laboratory and of human leukemia cells have shown blocking CDC42 inhibits formation of cells that initiate leukemia and promotes programmed cell death of leukemia cells. The goal of the newly funded research is to develop a new therapeutic strategy for targeting CDC42 to eliminate leukemia stem cells in bone marrow for leukemias that are resistant to conventional chemotherapies.

Dr. Pang's team is studying molecular mechanics of how Fanconi anemia (FA) proteins regulate cell response to oxidative stress during hematopoiesis, the process of blood cell formation in bone marrow. This is important to understanding the progression Fanconi anemia, bone marrow failure, myelodisplastic syndrome (once called pre-leukemia), AML and the underlying genomic instability in people with Fanconi anemia.

The researchers have already shown that bone marrow cells from patients with Fanconi anemia accumulate high levels of molecules called reactive oxygen species (ROS). ROS molecules are the source of oxidative stress and bone marrow cells in people with Fanconi anemia are sensitive to ROS suppressing the formation of blood stem and progenitor cells. The scientists have also demonstrated that abnormal accumulation of ROS leads to formation of leukemic cells in a mouse model of Fanconi anemia. The team has reported that a specific FA protein, FANCD2, binds and works with the transcription factor FOXO3a, which helps control the transfer of genetic information in cellular stress response processes. Together hey form a complex that helps provide a cellular defense system against oxidative stress.

By using cells from children with Fanconi anemia and working with mouse models in their continued research, the scientists hope to find new therapeutic targets to treat or prevent bone marrow failure and related cancer progression.


Contact: Nick Miller
Cincinnati Children's Hospital Medical Center

Related biology news :

1. Structure of 450 million year old protein reveals evolutions steps
2. First orchid fossil puts showy blooms at some 80 million years old
3. SyntheMed Completes $2.8 Million Equity Financing
4. Rutgers Genetics receives $7.8 million for autism research
5. Seattle Childrens Hospital leads $23.7 million NIH grant to study gene repair
6. UD leads $5.3-million research project on rice epigenetics
7. Rutgers high school outreach gets $3 million boost from NSF
8. NIH awards researcher $1.5 million new innovator grant for fruit-fly studies of prion proteins
9. UD leads $5.3-million research project on rice epigenetics
10. $22 million gift from Alfred Taubman launches new biomedical research institute
11. Nanobiosym awarded $2 million DTRA contract
Post Your Comments:
(Date:11/17/2015)... , November 17, 2015 Paris ... 2015.   --> Paris from 17 ... DERMALOG, the biometrics innovation leader, has invented the first ... fingerprints on the same scanning surface. Until now two different ... Now one scanner can capture both on the same ...
(Date:11/12/2015)... BOSTON , Nov. 12, 2015  A golden ... for Duchenne muscular dystrophy (DMD) has provided a new ... Boston Children,s Hospital, the Broad Institute of MIT and ... Brazil . Cell, ... some dogs "escape" the disease,s effects. The Boston Children,s ...
(Date:11/10/2015)... About signature verification Signature ... identify and verify the identity of an individual ... secure and accurate method of authentication and is ... because each individual,s signature is highly unique. Signature ... signature of an individual is compared and matched ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... 2015  Neurocrine Biosciences, Inc. (Nasdaq: NBIX ) ... CEO of Neurocrine Biosciences, will be presenting at the ... New York . .   ... 5 minutes prior to the presentation to download or ... will be available on the website approximately one hour ...
(Date:11/25/2015)... ... November 25, 2015 , ... A long-standing partnership ... Professionals (OPBAP) has been formalized with the signing of a Memorandum of Understanding. ... OPBAP leaders Capt. Karl Minter and Capt. Albert Glenn Tuesday, November 24, 2015, ...
(Date:11/25/2015)... Oregon , November 25, 2015 ... Market Research Report is a professional and in-depth ... industry.      (Logo: ) ... overview of the industry including definitions, classifications, applications ... is provided for the international markets including development ...
(Date:11/24/2015)... Malaysia , Nov. 24, 2015  Asia-Pacific ... contract research organisation (CRO) market. The trend of ... in lower margins but higher volume share for ... capacity and scale, however, margins in the CRO ... Organisation (CRO) Market ( ), finds ...
Breaking Biology Technology: