Navigation Links
Transmembrane receptor


Transmembrane receptors are integral membrane proteins, which reside and operate typically within a cell's plasma membrane, but also in the membranes of some subcellular compartments and organelles. Binding to a signalling molecule or sometimes to a pair of such molecules on one side of the membrane, transmembrane receptors initiate a response on the other side. In this way they play a unique and important role in cellular communications and signal transduction.

Many transmembrane receptors are composed of two or more protein subunits which operate collectively and may dissociate when ligands bind, fall off, or at another stage of their "activation" cycles. They are often classified based on their molecular structure, or because the structure is unknown in any detail for all but a few receptors, based on their hypothesized (and sometimes experimentally verified) membrane topology. The polypeptide chains of the simplest are predicted to cross the lipid bilayer only once, while others cross as many as seven times (the so-called G-protein coupled receptors).

Like any integral membrane protein, a transmembrane receptor may be subdivided into three parts or domains.


E=extracellular space; I=intracellular space; P=plasma membrane

Contents

The extracellular domain

The extracellular domain is the part of the receptor that sticks out of the membrane on the outside of the cell or organelle. If the polypeptide chain of the receptor crosses the bilayer several times, the external domain can comprise several "loops" sticking out of the membrane. By definition. a receptor's main function is to recognize and respond to a specific ligand, for example, a neurotransmitter or hormone (although certain receptors respond also to changes in transmembrane potential), and in many receptors these ligands bind to the extracellular domain.

The transmembrane domain

In the majority of receptors for which structural evidence exists, transmembrane alpha helices make up most of the transmembrane domain. In certain receptors, such as the nicotinic acetylcholine receptor, the transmembrane domain forms a protein-lined pore through the membrane, or ion channel. Upon activation of an extracellular domain by binding of the appropriate ligand, the pore becomes accessible to ions, which then pass through. In other receptors, the transmembrane domains are presumed to undergo a conformational change upon binding, which exerts an effect intracellularly. In some receptors, such as members of the 7TM superfamily, the transmembrane domain may contain the ligand binding pocket (evidence for this and for much of what else is known about this class of receptors is based in part on studies of bacteriorhodopsin, the detailed structure of which has been determined by crystallography).

The intracellular domain

The intracellular (or cytoplasmic) domain of the receptor interacts with the interior of the cell or organelle, relaying the signal. There are two fundamentally different ways for this interaction:

  • The intracellular domain communicates via specific protein-protein-interactions with effector proteins, which in turn send the signal along a signal chain to its destination.
  • The intracellular domain has enzymatic activity. Often, this is a tyrosine kinase activity. The enzymatic activity can also be located on an enzyme associated with the intracellular domain.

Regulation of receptor activity

There are several ways for the cell to regulate the activity of a transmembrane receptor. Most of them work through the intracellular domain. The most important ways are phosphorylation and internalization (see ubiquitin).

See also


'"/>


(Date:7/10/2014)... 7, 2014 Fingerprint Cards, (FPC,s) new ... win (DW). A Chinese Top 5 smartphone OEM has selected ... mass production in October 2014.   FPC is ... smartphone OEM, which has a planned date for the start ... volume for this phone of 3 million units. The Chinese ...
(Date:7/10/2014)... Sweden , July 8, 2014 ... has won a new design win (DW). An Asian OEM ... date for mass production start in August 2014.   ... Asian smartphone OEM, which has a planned date for start ... an initial ramp order of SEK 5M, for delivery in ...
(Date:7/10/2014)... , July 9, 2014 The ... spurred in large part by meaningful use and ... care providers interact with laboratory information. Now, more ... the field of clinical informatics in order to ... To address the educational needs of pathologists ...
Breaking Biology News(10 mins):FPC Wins DW for 1021 Touch Sensor for Flagship Smartphone from Chinese Top 5 Smartphone OEM 2FPC Wins DW and Initial Ramp Order for FPC1021 Touch Sensor for Flagship Smartphone from Asian OEM 2New Clinical Informatics Curriculum Prepares Future Pathologists 2New Clinical Informatics Curriculum Prepares Future Pathologists 3New Clinical Informatics Curriculum Prepares Future Pathologists 4
... MDWhether from surgery or battle wounds, ugly scars can affect body ... FASEB Journal offers a new strategy to ... NYU describe how agents that block receptors for adenosine (a molecule ... energy to muscles) can be applied topically to healing wounds to ...
... thronging their way to seaside resorts and parks to celebrate ... to sea toward the north, the Atlantic Ocean,s own spring ... plant plankton, or phytoplankton. In what,s known as the ... color, first "greening" then "whitening" the sea as one species ...
... the flow of vehicles may be a rare sight these ... out in our cells. A protein called Lem4 directs a ... one molecule while waving another through, scientists at the European ... study is published online today in Cell . ...
Cached Biology News:New York University scientists discover possible treatment to reduce scarring 2Scientists discover new trigger for immense North Atlantic plankton bloom 2Scientists discover new trigger for immense North Atlantic plankton bloom 3Scientists discover new trigger for immense North Atlantic plankton bloom 4Stop and go 2
Other biology definitionOther Tags