Navigation Links
Optical spectrum


The optical spectrum (light or visible spectrum) is the portion of the electromagnetic spectrum that is visible to the human eye. There are no exact bounds to the optical spectrum; a typical human eye will respond to wavelengths from 400 to 700 nm, although some people may be able to perceive wavelengths from 380 to 780 nm. A light-adapted eye typically has its maximum sensitivity at ~555 nm, in the yellow region of the optical spectrum.

Wavelengths visible to the eye are defined by the spectral range of the "optical window", the region of the electromagnetic spectrum which passes largely unattenuated through the Earth's atmosphere (although blue light is scattered more than red light, which is the reason the sky is blue). Electromagnetic radiation outside the optical wavelength range is almost entirely absorbed by the atmosphere.

Contents

Historical use of the term

Sir Isaac Newton first used the Latin word spectrum (appearance or apparition) in print in 1671. He was describing the phenomenon of colored bands dispersing from white sunlight passing through a prism.

Explanation of Newton's experiment

When a beam of sunlight strikes the face of a glass prism at an angle, some is reflected and some of the beam passes into the glass. All light travels at the same speed in a vacuum, but in transparent matter different colors (frequencies) move at different speeds. Red light moves more quickly in glass than violet light and it bends (refracts) less sharply. A triangular prism is shaped to bend the light twice, and disperse it as much as possible. The result is the spectrum of colors.

Spectroscopy

The scientific study of objects based on the spectrum of the light they emit is called spectroscopy. One particularly important application of spectroscopy is in astronomy, where spectroscopy is essential for analysing the properties of distant objects. Typically, astronomical spectroscopy utilises high-dispersion diffraction gratings to observe spectra at very high spectral resolutions. The first exoplanets to be discovered were found by analysing the doppler shift of stars at such high resolution that variations in their radial velocity as small as a few metres per second could be detected - the presence of planets was revealed by their gravitational influence on the motion of the stars analysed.

See also


'"/>


(Date:11/17/2016)... Global Market Watch: Primarily supported by ... Banks and Academics) market is to witness a value of ... the highest Compounded Annual Growth Rate (CAGR) of 10.75% is ... analysis period 2014-2020. North America is ... Europe at 9.56% respectively. Report ...
(Date:11/16/2016)... Sensory Inc ., a Silicon ... consumer electronics, and VeriTran , a technology ... today announced a global partnership that will provide ... users of mobile banking and mobile payments solutions.  ... which requires no specialized biometric scanners, yet provides ...
(Date:11/15/2016)... Research and Markets has announced the addition ... report to their offering. ... The global ... from USD 6.21 Billion in 2016, growing at a CAGR of ... bioinformatics market is driven by the growing demand for nucleic acid ...
Breaking Biology News(10 mins):
Other biology definition