Navigation Links
Neutral theory of molecular evolution


The neutral theory of molecular evolution (also, simply the neutral theory of evolution) is an influential theory that was introduced with provocative effect by Motoo Kimura in the late 1960s and early 1970s. Although the theory was received by some as an argument against Darwin's theory of evolution by natural selection, Kimura and most evolutionary biologists today maintain that the two theories are compatible. The theory attributes a large role to genetic drift.

Contents

Overview

According to Kimura, when one compares the genomes of existing species, the vast majority of single-nucleotide differences are selectively "neutral." That is, these differences do not influence the fitness of either the species or the individuals who make up the species. As a result, the theory regards these genome features as neither subject to, nor explicable by, natural selection. This view is based in part on the genetic code, according to which sequences of three nucleotides (codons) may differ and yet encode the same amino acid (GCC and GCA both encode alanine, for example). Consequently, many potential single-nucleotide changes are in effect "silent" or "unexpressed" (see synonymous or silent substitution ). Such changes are presumed to have little or no biological effect.

A second assertion or hypothesis of the neutral theory is that most evolutionary change is the result of genetic drift acting on neutral alleles. A new allele arises typically through the spontaneous mutation of a single nucleotide within the sequence of a gene. In single-celled organisms, such an event immediately contributes a new allele to the population, and this allele is subject to drift. In sexually reproducing, multicellular organisms, the nucleotide substitution must arise within one of the many sex cells that an individual carries. Then only if that sex cell participates in the genesis of an embryo and offspring does the mutation contribute a new allele to the population. Neutral substitutions create new neutral alleles.

Through drift, these new alleles may become more common within the population. They may subsequently decline and disappear, or in rare cases they may become "fixed"--meaning that the substitution they carry becomes a universal feature of the population or species. When an allele carrying one of these new substitutions becomes fixed, the effect is to add a substitution to the sequence of the previously fixed allele. In this way, neutral substitutions tend to accumulate, and genomes tend to evolve.

According to the mathematics of drift, when looking between two species or two isolated populations, most of their single-nucleotide differences can be assumed to have accumulated at the same rate as individuals with mutations are born. This latter rate, it has been argued, is predictable from the error rate of the enzymes that carry out DNA replication--enzymes that have been well studied and are highly conserved across all species. Thus, the neutral theory is the foundation of the molecular clock technique, which evolutionary molecular biologists use to measure how much time has passed since species diverged from a common ancestor. While the mutation rate is no longer considered a constant, diverse and more sophisticated clock techniques have emerged.

Many molecular biologists and population geneticists, besides Kimura, contributed to the development of the neutral theory, which may be viewed as an offshoot of the modern evolutionary synthesis.

The "neutralist-selectionist" debate

A heated debate arose on the initial publication of Kimura's theory, in which discussion largely revolved around the relative percentages of alleles that are "neutral" versus "non-neutral" in any given genome. Contrary to the perception of many onlookers, the debate was not about whether or not natural selection acts at all.

Tomoko Ohta extended the neutral theory to include the concept of "near-neutrality", that is, genes that are affected mostly by drift or mostly by selection depending on the effective size of a breeding population. The neutralist-selectionist quarrel has since cooled, yet the question of the relative percentages of neutral and non-neutral alleles remains.

As of the early 2000s, the neutral theory is widely used as a "null model" for so-called null hypothesis testing. Researchers typically apply such a test when they aready have an estimate of the amount of time that has passed since two species or lineages diverged--for example, from radiocarbon dating at fossil excavation sites, or from historical records in the case of human families. The test compares the actual number of differences between two sequences and the number that the neutral theory predicts given the independently estimated divergence time. If the actual number of differences is much less than the prediction, the null hypothesis has failed, and researchers may reasonably assume that selection has acted on the sequences in question. Thus such tests contribute to the ongoing investigation into the extent to which molecular evolution is neutral.

See also

References

External links


'"/>


(Date:7/11/2014)... of Chicago is creating a new professorship in ... University,s Institute for Molecular Engineering and the Marine ... from the Millicent and Eugene Bell Foundation., The ... within the Institute for Molecular Engineering. That endowed ... at the MBL,s Eugene Bell Center for Regenerative ...
(Date:7/11/2014)... researchers from The Chinese University of Hong Kong, BGI ... soybean linked to salt tolerance, with implication for improving ... study published online in Nature Communications provides ... crop improvement. , Soybean is an important crop for ... soybeans have less genetic diversities than their wild counterparts. ...
(Date:7/11/2014)... two different ways that allow unprecedented experimental insights ... of oxygen molecules in photosynthesis. The two studies ... Nature Communications . , "The new knowledge will ... oxidation, which are key components for building artificial ... energy in fuels like hydrogen, ethanol or methanol," ...
Breaking Biology News(10 mins):New professorship in tissue engineering links molecular engineering, marine biology 2BGI reports a novel gene for salt tolerance found in wild soybean 2Molecular snapshots of oxygen formation in photosynthesis 2
... AMES, Iowa A national panel led ... effort to research and develop technologies that capture, ... ecosystems, economic development and national security. The ... recently met for the first time in Chicago. ...
... of a massive set of mammal data accessed through ... helped quantify the influence of various environmental factors on ... A team of Israeli scientists based at the Technion ... detailed coordinates in the ,lower 48, states of the ...
... are increasingly using live cells in their treatments: in ... in stem cell therapies and following severe burns. Cells ... burned skin, eliminating immune deficiencies, repairing degenerated cartilage or ... by the immune system. These cells have to be ...
Cached Biology News:Iowa State engineers establish national panel to advance a carbon negative economy 2Iowa State engineers establish national panel to advance a carbon negative economy 3Use of GBIF helps clarify environment-species links 2Plasma in bags 2
Other biology definitionOther Tags