Navigation Links
Neuron


Neurons (also spelled neurones or called nerve cells) are the primary cells of the nervous system. In vertebrates, they are found in the brain, the spinal cord and in the nerves and ganglia of the peripheral nervous system.

Contents

Classes

There are three classes of neurons: afferent neurons, efferent neurons, and interneurons.

Anatomy and histology


Many highly specialized types of neurons exist, and these differ widely in appearance. Characteristically, neurons are highly asymmetric in shape. Neurons consist of:

  • The soma, or cell-body, the relatively large central part of the cell between the dendrites and the axon.
  • The axon, a much finer, cable-like projection which may extend tens, hundreds, or even tens of thousands of times the diameter of the soma in length. This is the structure which carries nerve signals away from the neuron. Each neuron has only one axon, but this axon may undergo extensive branching and thereby enable communication with many target cells.
  • The dendrite, a short, branching arbor of cellular extensions. Each neuron has very many dendrites with profuse dendritic branches. These structures form the main information receiving network for the neuron.

Axon and dendrites alike are typically only about a micrometre thick, while the soma is usually about 25 micrometres in diameter and not much larger than than the cell nucleus it contains. The axon of a human motoneuron can be over a metre long, reaching from the base of the spine to the toes.

Connectivity

Neurons communicate with one another and to other cells through synapses, where the axon tip of one cell impinges upon a dendrite or soma of another, or less commonly to an axon. Neurons of the cortex in mammals, such as the Purkinje cells , have over 1000 dendrites apiece, enabling connections with tens of thousands of other cells.

Types of signalling

Neurons communicate with one another across synapses. This communication is usually chemically mediated by rapid secretion of neurotransmitter molecules. Pre-synaptic neurons (i.e.the neurons which release the neurotransmitter) may produce in the post-synaptic neurons (i.e. the neurons being affected by the neurotransmitter) an electrical stimulation (an electrical excitation) which will spread to the axon hillock generating an action potential which then travels as a wave of electrical excitation along the axon. Arrival of an action potential at the tip of an axon triggers the release of neurotransmitter at a synaptic gap. Neurotransmitters can either stimulate or suppress (inhibit) the electrical excitability of a target cell. An action potential will only be triggered in the target cell if neurotransmitter molecules acting on their post-synaptic receptors cause the cell to reach its threshold potential.

Adaptations to carrying action potentials

The narrow cross-section of axons and dendrites lessens the metabolic expense of carrying action potentials, although thicker axons convey the impulses more rapidly, generally speaking.

Many neurons have insulating sheaths of myelin around their axons, which enable their action potentials to travel faster than in unmyelinated axons of the same diameter. Formed by glial cells in the central nervous system and Schwann cells in the peripheral nervous system. The myelin sheath in peripheral nerves normally runs along the axon in sections about 1 mm long, punctuated by unsheathed nodes of Ranvier. Multiple sclerosis is a neurological disorder which results from abnormal demyelination of peripheral nerves. Neurons with demyelinated axons do not conduct electrical signals properly.

Neurons and glia make up the two chief cell types of the central nervous system. There are far more glial cells than neurons, and recent experimental results have suggested that glial cells play a vital role in information processing among neurons.

Histology and internal structure

Nerve cell bodies stained with basophilic dyes will show numerous microscopic clumps of Nissl substance (named after German psychiatrist and neuropathologist Franz Nissl, 1860–1919), which consists of rough endoplasmic reticulum and associated ribosomes. The prominence of the Nissl substance can be explained by the fact that nerve cells are metabolically very active, and hence are involved in large numbers of protein synthesis.

The cell body of a neuron is supported by a complex meshwork of structural proteins called neurofilaments, which are assembled into larger neurofibrils. Some neurons also contain pigment granules, such as neuromelanin (a brownish-black pigment, byproduct of synthesis of catecholamines) and lipofuscin (yellowish-brown pigment that accumulates with age).

Neurons of the brain

The nematode worm (Caenorhabditis elegans) has 302 neurons. Scientists have mapped all of the nematode's neurons.

The human brain has about 100 billion (1011) neurons and 100 trillion (1014) connections (synapses) between them.

See also

External links


'"/>


(Date:9/15/2014)... the subsequent rapid decrease in the water level of ... square kilometres of new, fertile land in eastern Finland. ... researchers has studied the role that the decrease in ... and humans. After dramatic shifts in the waterways, human ... rise to a new, innovative culture. This stemmed from ...
(Date:9/15/2014)... weighing as much as 170 tons, the blue whale is ... heaviest living thing ever seen on Earth. So there,s no ... fish larvae, which measure millimeters in length and tip the ... Not so fast, says L. Mahadevan, the Lola England de ... and of Physics. , Using simple hydrodynamics, a team ...
(Date:9/15/2014)... cardiovascular disease (CVD) claims 17 million lives each year, ... 9.4 million. 1 New research presented by international ... Montpellier, France on September 15, 2014, suggests that milk ... , At the Milk and Dairy Products in ... risk for hypertension and CVD was examined by Dr. ...
Breaking Biology News(10 mins):The creation of the Vuoksi River preceded a significant cultural shift 2The science behind swimming 2The science behind swimming 3Dairy consumption linked to lower blood pressure and cardiovascular disease risk 2
... research into cheetah cub survival has refuted the theory that ... cannot coexist in conservation areas. The study, published in the ... Kgalagadi Transfrontier Park were seven times more likely to survive ... found to be the cubs, main predatory threat. Previously, ...
... MA -- Researchers at MIT and Brigham and Women,s ... of intestinal stem cells, then stimulate them to develop ... intestinal cells. Using these cells, scientists could develop and ... colitis. The small intestine, like most other body ...
... approach to mapping how proteins interact with each other, ... aid in the design of new drugs for diseases ... artificial amino acids, the Salk scientists determine the detailed ... the molecule that turns it on. The switch--corticotrophin releasing ...
Cached Biology News:Researchers unlock a new means of growing intestinal stem cells 2Researchers unlock a new means of growing intestinal stem cells 3Salk scientists crack riddle of important drug target 2Salk scientists crack riddle of important drug target 3
Other biology definitionOther Tags