Navigation Links
Molecular biology


Molecular biology is the study of biology at a molecular level. The field overlaps with other areas of biology, particularly genetics and biochemistry. Molecular biology chiefly concerns itself with understanding the interactions between the various systems of a cell, including the interrelationship of DNA, RNA and protein synthesis and learning how these interactions are regulated.

Writing in Nature, W.T. Astbury described molecular biology as:

"... not so much a technique as an approach, an approach from the viewpoint of the so-called basic sciences with the leading idea of searching below the large-scale manifestations of classical biology for the corresponding molecular plan. It is concerned particularly with the forms of biological molecules and ..... is predominantly three-dimensional and structural - which does not mean, however, that it is merely a refinement of morphology - it must at the same time inquire into genesis and function"
Contents

Relationship to other "molecular-scale" biological sciences

Schematic relationship between biochemistry, genetics and molecular biology

Researchers in molecular biology use specific techniques native to molecular biology (see Techniques section later in article), but increasingly combine these with techniques and ideas from genetics, biochemistry and biophysics. There is not a hard-line between these disciplines as there once was. The following figure is a schematic that depicts one possible view of the relationship between the fields:


  • Biochemistry is the study of the chemical substances and vital processes occurring in living organisms.
  • Genetics is the study of the effect of genetic differences on organisms. Often this can be inferred by the absence of a normal component (e.g. one gene). The study of "mutants" – organisms which lack one or more functional components with respect to the so-called "wild type" or normal phenotype. Genetic interactions such as epistasis can often confound simple interpretations of such "knock-out" studies.
  • Molecular biology is the study of molecular underpinnings of the process of replication, transcription and translation of the genetic material. The central dogma of molecular biology where genetic material is transcribed into RNA and then translated into protein, despite being an oversimplified picture of molecular biology, still provides a good starting point for understanding the field. This picture, however, is undergoing revision in light of emerging novel roles for RNA.

Much of the work in molecular biology is quantitative, and recently much work has been done at the interface of molecular biology and computer science in bioinformatics and computational biology. As of the early 2000s, the study of gene structure and function, molecular genetics, has been amongst the most prominent sub-field of molecular biology.

Increasingly many other fields of biology focus on molecules, either directly studying their interactions in their own right such as in cell biology and developmental biology, or indirectly, where the techniques of molecular biology are used to infer historical attributes of populations or species, as in fields in evolutionary biology such as population genetics and phylogenetics. There is also a long tradition of studying biomolecules "from the ground up" in biophysics.

Techniques of molecular biology

Since the late 1950s and early 1960s, molecular biologists have learned to characterise, isolate, and manipulate the molecular components of cells and organisms. These components include DNA, the repository of genetic information; RNA, a close relative of DNA whose functions range from serving as a temporary working copy of DNA to actual structural and enzymatic functions as well as a functional and structural part of the translational apparatus; and proteins, the major structural and enzymatic type of molecule in cells.

Expression cloning

One of the most basic techniques of molecular biology to study protein function is expression cloning. In this technique, DNA coding for a protein of interest is cloned (using PCR and/or restriction enzymes) into a plasmid (known as an expression vector). This plasmid may have special promoter elements to drive production of the protein of interest, and may also have antibiotic resistance markers to help follow the plasmid.

This plasmid can be inserted into either bacterial or animal cells. Introducing DNA into bacterial cells is called transformation, and can be effected by several methods, including electroporation, microinjection and chemically. Introducing DNA into eukaryotic cells, such as animal cells, is called transfection. Several different transfection techniques are available, including calcium phosphate transfection, liposome transfection, and proprietary transfection reagents such as Fugene. DNA can also be introduced into cells using viruses as a carrier. In such cases, the technique is called viral transduction, and the cells are said to be transduced.

In either case, DNA coding for a protein of interest is now inside a cell, and the protein can now be expressed. A variety of systems, such as inducible promoters and specific cell-signaling factors, are available to help express the protein of interest at high levels. Large quantities of a protein can then be extracted from the bacterial or eukaryotic cell. The protein can be tested for enzymatic activity under a variety of situations, the protein may be crystallized so its tertiary structure can be studied, or, in the pharmaceutical industry, the activity of new drugs against the protein can be studied.

Polymerase chain reaction (PCR)

Main article: Polymerase chain reaction

The polymerase chain reaction is an extremely versatile technique for copying DNA. In brief, PCR allows a single DNA sequence to be copied (millions of times), or altered in predetermined ways. For example, PCR can be used to introduce restriction enzyme sites, or to mutate (change) particular bases of DNA. PCR can also be used to determine whether a particular DNA fragment is found in a cDNA library.

Gel electrophoresis

Main article: Gel electrophoresis

Gel electrophoresis is one of the principal tools of molecular biology. The basic principle is that DNA, RNA, and proteins can all be separated using an electric field. In agarose gel electrophoresis, DNA and RNA can be separated based on size by running the DNA through an agarose gel. Proteins can be separated based on size using an SDS-PAGE gel. Proteins can also be separated based on their electric charge, using what is known as an isoelectric gel...

Western blotting and immunochemistry

Main article: Western blot

Antibodies to most proteins can be created by injecting small amounts of the protein into an animal such as a mouse, rabbit, sheep, or donkey. These antibodies can be used for a variety of analytical and preprative techniques.

In Western blotting, proteins are first separated by size, in a thin gel sandwiched between two glass plates. This technique is called SDS-PAGE (for Sodium Dodecyl Sulfate Poly-Acrylamide Gel Electrophoresis). The proteins in the gel are then transferred to a PVDF, nitrocellulose, nylon or other support membrane. This membrane can then be probed with solutions of antibodies. Antibodies that specifically bind to the protein of interest can then be visualized by a variety of techniques, including chemoluminescence or radioactivity.

Antibodies can also be used to purify proteins. Antibodies to a protein are generated and are often then coupled to "beads". After the antibody has bound to the protein of interest, this antibody-protein complex can be separated from all other proteins by centrifugation. During centrifugation, the beads, to which the antibody is coupled, will pellet (bringing the protein of interest down with it) whereas all other proteins will remain in the solution. Alternatively, antibodies coupled to a solid support matrix like Sephadex or Sepharose beads, for example, can be used to remove a protein of interest from a complex solution. After washing unbound and non-specifically bound materials away from the "beads", the protein of interest is then eluted from the matrix, usually by adding a solution with a high salt concentration, or by varying the pH of the solution in which the matrix is contained. The beads can either be suspended in solution (batch processing) or packed into a tube (column processing).

History

Molecular biology was established in the 1930s, the term was first coined by Warren Weaver in 1938 however. Warren was director of Natural Sciences for the Rockefeller Foundation at the time and believed that biology was about to undergo a period of significant change given recent advances in fields such as X-ray crystallography. He therefore channeled significant amounts of (Rockefeller Institute) money into biological fields.

Further reading

  • Keith Roberts, Martin Raff, Bruce Alberts, Peter Walter, Julian Lewis and Alexander Johnson, Molecular Biology of the Cell, 4th Edition, Routledge, March, 2002, hardcover, 1616 pages, 7.6 pounds, ISBN 0815332181

Notes

  • W.T. Astbury, [Nature 190, 1124 (1961)]

Related topics

Notable molecular biologists

See also

In fiction and games

External links


'"/>


(Date:7/29/2014)... overseas territory of Ascension Island, one of the world,s ... renaissance. , Writing in the journal Biodiversity and ... Ascension Island Government Conservation Department report that the number ... outpost has increased by more than 500 per cent ... 24,000 nests are now estimated to be laid on ...
(Date:7/29/2014)... 2014  When it comes to technology, healthcare is usually one ... last. However, when it comes to wearables, healthcare is trying to ... the Internet of Things and its wearable cousins is less than ... healthcare industry, whether it,s in the hospital for a major procedure ... With that in mind, InformationWeek editor Rodney Brown ...
(Date:7/29/2014)... Schools of Dentistry (UM SOD) and Medicine (UM ... a five-year $10.7 million grant award from the ... of the National Institutes of Health to study ... (STDs). The grant, which renews a previous $12 ... direction for the research by studying chlamydial and ...
Breaking Biology News(10 mins):Major turtle nesting beaches protected in 1 of the UK's far flung overseas territories 2University of Maryland Schools of Dentistry and Medicine receive NIH grant 2University of Maryland Schools of Dentistry and Medicine receive NIH grant 3University of Maryland Schools of Dentistry and Medicine receive NIH grant 4
... Valley, NY. (Dec. 20, 2012) When different types ... them aid in repairing central nervous system (CNS) trauma, ... A Belgian research team carried out research aimed at ... cells - neural stem cells, mouse embryonic fibroblasts, dendritic ...
... U.S. Secretary of the Interior Ken Salazars announcement of ... (NPR-A) that balances wildlife conservation and energy development in ... Integrated Activity Plan and Final Environmental Impact Statement (Final ... is the first comprehensive land management plan ever developed ...
... Emeritus of the department of dermatology at Boston University School ... has been named a 2012 Charter Fellow of the National ... End, is among four faculty members at Boston University nominated ... fellows, who are elected by their peers, represent 98 innovators ...
Cached Biology News:Cell Transplantation study investigates fate and function of cells transplanted to the CNS 2WCS applauds Dept. of Interior plan balancing conservation and energy development in NPR-A 2
Other biology definitionOther Tags