Navigation Links
Molecular biology

Molecular biology is the study of biology at a molecular level. The field overlaps with other areas of biology, particularly genetics and biochemistry. Molecular biology chiefly concerns itself with understanding the interactions between the various systems of a cell, including the interrelationship of DNA, RNA and protein synthesis and learning how these interactions are regulated.

Writing in Nature, W.T. Astbury described molecular biology as:

"... not so much a technique as an approach, an approach from the viewpoint of the so-called basic sciences with the leading idea of searching below the large-scale manifestations of classical biology for the corresponding molecular plan. It is concerned particularly with the forms of biological molecules and ..... is predominantly three-dimensional and structural - which does not mean, however, that it is merely a refinement of morphology - it must at the same time inquire into genesis and function"

Relationship to other "molecular-scale" biological sciences

Schematic relationship between biochemistry, genetics and molecular biology

Researchers in molecular biology use specific techniques native to molecular biology (see Techniques section later in article), but increasingly combine these with techniques and ideas from genetics, biochemistry and biophysics. There is not a hard-line between these disciplines as there once was. The following figure is a schematic that depicts one possible view of the relationship between the fields:

  • Biochemistry is the study of the chemical substances and vital processes occurring in living organisms.
  • Genetics is the study of the effect of genetic differences on organisms. Often this can be inferred by the absence of a normal component (e.g. one gene). The study of "mutants" – organisms which lack one or more functional components with respect to the so-called "wild type" or normal phenotype. Genetic interactions such as epistasis can often confound simple interpretations of such "knock-out" studies.
  • Molecular biology is the study of molecular underpinnings of the process of replication, transcription and translation of the genetic material. The central dogma of molecular biology where genetic material is transcribed into RNA and then translated into protein, despite being an oversimplified picture of molecular biology, still provides a good starting point for understanding the field. This picture, however, is undergoing revision in light of emerging novel roles for RNA.

Much of the work in molecular biology is quantitative, and recently much work has been done at the interface of molecular biology and computer science in bioinformatics and computational biology. As of the early 2000s, the study of gene structure and function, molecular genetics, has been amongst the most prominent sub-field of molecular biology.

Increasingly many other fields of biology focus on molecules, either directly studying their interactions in their own right such as in cell biology and developmental biology, or indirectly, where the techniques of molecular biology are used to infer historical attributes of populations or species, as in fields in evolutionary biology such as population genetics and phylogenetics. There is also a long tradition of studying biomolecules "from the ground up" in biophysics.

Techniques of molecular biology

Since the late 1950s and early 1960s, molecular biologists have learned to characterise, isolate, and manipulate the molecular components of cells and organisms. These components include DNA, the repository of genetic information; RNA, a close relative of DNA whose functions range from serving as a temporary working copy of DNA to actual structural and enzymatic functions as well as a functional and structural part of the translational apparatus; and proteins, the major structural and enzymatic type of molecule in cells.

Expression cloning

One of the most basic techniques of molecular biology to study protein function is expression cloning. In this technique, DNA coding for a protein of interest is cloned (using PCR and/or restriction enzymes) into a plasmid (known as an expression vector). This plasmid may have special promoter elements to drive production of the protein of interest, and may also have antibiotic resistance markers to help follow the plasmid.

This plasmid can be inserted into either bacterial or animal cells. Introducing DNA into bacterial cells is called transformation, and can be effected by several methods, including electroporation, microinjection and chemically. Introducing DNA into eukaryotic cells, such as animal cells, is called transfection. Several different transfection techniques are available, including calcium phosphate transfection, liposome transfection, and proprietary transfection reagents such as Fugene. DNA can also be introduced into cells using viruses as a carrier. In such cases, the technique is called viral transduction, and the cells are said to be transduced.

In either case, DNA coding for a protein of interest is now inside a cell, and the protein can now be expressed. A variety of systems, such as inducible promoters and specific cell-signaling factors, are available to help express the protein of interest at high levels. Large quantities of a protein can then be extracted from the bacterial or eukaryotic cell. The protein can be tested for enzymatic activity under a variety of situations, the protein may be crystallized so its tertiary structure can be studied, or, in the pharmaceutical industry, the activity of new drugs against the protein can be studied.

Polymerase chain reaction (PCR)

Main article: Polymerase chain reaction

The polymerase chain reaction is an extremely versatile technique for copying DNA. In brief, PCR allows a single DNA sequence to be copied (millions of times), or altered in predetermined ways. For example, PCR can be used to introduce restriction enzyme sites, or to mutate (change) particular bases of DNA. PCR can also be used to determine whether a particular DNA fragment is found in a cDNA library.

Gel electrophoresis

Main article: Gel electrophoresis

Gel electrophoresis is one of the principal tools of molecular biology. The basic principle is that DNA, RNA, and proteins can all be separated using an electric field. In agarose gel electrophoresis, DNA and RNA can be separated based on size by running the DNA through an agarose gel. Proteins can be separated based on size using an SDS-PAGE gel. Proteins can also be separated based on their electric charge, using what is known as an isoelectric gel...

Western blotting and immunochemistry

Main article: Western blot

Antibodies to most proteins can be created by injecting small amounts of the protein into an animal such as a mouse, rabbit, sheep, or donkey. These antibodies can be used for a variety of analytical and preprative techniques.

In Western blotting, proteins are first separated by size, in a thin gel sandwiched between two glass plates. This technique is called SDS-PAGE (for Sodium Dodecyl Sulfate Poly-Acrylamide Gel Electrophoresis). The proteins in the gel are then transferred to a PVDF, nitrocellulose, nylon or other support membrane. This membrane can then be probed with solutions of antibodies. Antibodies that specifically bind to the protein of interest can then be visualized by a variety of techniques, including chemoluminescence or radioactivity.

Antibodies can also be used to purify proteins. Antibodies to a protein are generated and are often then coupled to "beads". After the antibody has bound to the protein of interest, this antibody-protein complex can be separated from all other proteins by centrifugation. During centrifugation, the beads, to which the antibody is coupled, will pellet (bringing the protein of interest down with it) whereas all other proteins will remain in the solution. Alternatively, antibodies coupled to a solid support matrix like Sephadex or Sepharose beads, for example, can be used to remove a protein of interest from a complex solution. After washing unbound and non-specifically bound materials away from the "beads", the protein of interest is then eluted from the matrix, usually by adding a solution with a high salt concentration, or by varying the pH of the solution in which the matrix is contained. The beads can either be suspended in solution (batch processing) or packed into a tube (column processing).


Molecular biology was established in the 1930s, the term was first coined by Warren Weaver in 1938 however. Warren was director of Natural Sciences for the Rockefeller Foundation at the time and believed that biology was about to undergo a period of significant change given recent advances in fields such as X-ray crystallography. He therefore channeled significant amounts of (Rockefeller Institute) money into biological fields.

Further reading

  • Keith Roberts, Martin Raff, Bruce Alberts, Peter Walter, Julian Lewis and Alexander Johnson, Molecular Biology of the Cell, 4th Edition, Routledge, March, 2002, hardcover, 1616 pages, 7.6 pounds, ISBN 0815332181


  • W.T. Astbury, [Nature 190, 1124 (1961)]

Related topics

Notable molecular biologists

See also

In fiction and games

External links


(Date:12/11/2014)... 2014  Data Sciences International (DSI), the global ... new series of digital telemetry implants to meet ... series, part of the PhysioTel™ Digital platform, was ... physiologic data when incorporating functional endpoints into repeat-dose ... toxicology studies has evolved from short ECG strips ...
(Date:12/10/2014)... DIEGO , Dec. 9, 2014 CIE ... collaboration catalyst that provides the connective tissue that enhances ... enabling them to easily share client-level information; earned a ... to expand to organizations serving seniors aging in community ... Diego" partner on December 11 th 4-6p. ...
(Date:12/5/2014)... , Dec. 4, 2014  Tute Genomics, a leader ... million in Series A1 funding led by UK-based Eurovestech. ... participated in the investment round. "We are ... community adopts next-generation sequencing and seeks new approaches for ... Reid Robison , MD MBA, and CEO of Tute ...
Breaking Biology News(10 mins):New telemetry implants expected to change how large animal toxicology studies are conducted 2Community Information Exchange San Diego Launches Pilot, Secures $1 Million Expansion Grant, and Becomes a "Live Well San Diego" Partner 2Community Information Exchange San Diego Launches Pilot, Secures $1 Million Expansion Grant, and Becomes a "Live Well San Diego" Partner 3Community Information Exchange San Diego Launches Pilot, Secures $1 Million Expansion Grant, and Becomes a "Live Well San Diego" Partner 4Tute Genomics Raises $2.3 Million to Scale Up Cloud-Based Genome Analytics and Accelerate Personalized Medicine 2Tute Genomics Raises $2.3 Million to Scale Up Cloud-Based Genome Analytics and Accelerate Personalized Medicine 3
... You don,t need to spray weedkiller to remove the ... with either boiling water, steam or flaming will dispatch even ... a new PhD project from the University of Copenhagen. ... is important that each treatment is dosed correctly. Basically, ...
... Johns Hopkins scientists have engineered cells that behave like ... on one or more unique inputs. This feat, published in ... eventually help researchers create computers that use cells as tiny ... in the Department of Cell Biology and member of the ...
... BETHESDA, MD May 30, 2012 The Genetics Society ... six graduate students and seven postdoctoral researchers as recipients of ... Each of these early-career geneticists receives a $1,000 travel award ... in a laboratory course of their choice that will enhance ...
Cached Biology News:Blanch your weeds 2Training cells to perform Boolean functions? It's logical 2Training cells to perform Boolean functions? It's logical 3The Genetics Society of America announces DeLill Nasser Travel Award recipients 2
Other biology definitionOther Tags