Navigation Links
Intron


Introns are sections of DNA within a gene that do not encode part of the protein that the gene produces, and are spliced out of the mRNA that is transcribed from the gene before it is exported from the cell nucleus. Introns exist mainly (but not only) in eukaryotic cells. The regions of a gene that remain in the spliced mRNA are called exons.

Introns sometimes allow for alternative splicing of a gene, so that several different proteins that share some sections in common can be produced from a single gene. The control of mRNA splicing, and hence of which alternative is produced, is performed by a wide variety of signal molecules. Introns also sometimes contain "old code," sections of a gene that were probably once translated into protein but which are now discarded.

Some introns such as Group I and Group II introns are actually ribozymes that are capable of catalyzing their own splicing out of the primary RNA transcript. They remove themselves on their own.

The amount of intron DNA varies widely between species. The pufferfish species Fugu rubripes has a very low amount of intron DNA, whereas related species have higher amounts. Introns are not to be confused with junk DNA, which is all DNA without known function that is not part of a gene.

Intron evolution

There are two competing theories as to the evolutionary origin of introns, which is usually studied in a highly conserved family of genes such as the actins. In the introns-early model ancestral genes are believed to have included a large number of introns, some of which have been lost over evolutionary time, leading to the different but similar intron patterns in related genes of different species. The introns-late model suggests instead that introns occur in the same location in variants of a given gene because the location is in some way predisposed to the introduction of an intron, and therefore that a similar intron pattern may arise in two different species by a form of convergent evolution.

See also

Reference

  1. Walter Gilbert (1978 Feb 9) "Why Genes In Pieces?" Nature 271 (5645):501.


'"/>


(Date:11/28/2016)... LONDON , Nov. 28, 2016 ... at a rate of 16.79%" The biometric system ... to grow further in the near future. The biometric ... 32.73 billion in 2022, at a CAGR of 16.79% ... biometrics system, integration of biometric technology in smartphones, rising ...
(Date:11/22/2016)... According to the new market research report "Biometric System Market by Authentication ... (Hardware and Software), Function (Contact and Non-contact), Application, and Region - Global ... from USD 10.74 Billion in 2015 to reach USD 32.73 Billion by ... Continue Reading ... ...
(Date:11/21/2016)... 21, 2016   Neurotechnology , a provider ... today announced that the MegaMatcher On Card fingerprint ... for the NIST Minutiae Interoperability Exchange (MINEX) ... mandatory steps of the evaluation protocol. ... test of fingerprint templates used to establish compliance ...
Breaking Biology News(10 mins):
Other biology definition