Navigation Links
Endosymbiont


An endosymbiont is any organism that lives within the body or cells of another organism, i.e. forming an endosymbiosis (Greek: endo = inner and biosis = living). For instance, some nitrogen fixing bacteria (e.g. in Rhizobium, Sinorhizobium and Bradyrhizobium ) live in plants, reef-building corals contain single-celled algae, and several insect species contain bacterial endosymbionts. Many other examples of endosymbiosis exist.

Many instances of endosymbiosis are obligate, where neither the endosymbiont nor the host can survive without the other. One example is represented by gutless marine worms which can not survive without their endosymbiotic bacteria. However, not all endosymbioses are obligate. Also, some endosymbioses can be harmful to either of the organisms involved. See symbiosis for further discussion of this issue.

It is generally agreed that certain organelles of the eukaryotic cell, especially mitochondria and chloroplasts, originated as bacterial endosymbionts. This theory is known as the endosymbiotic theory, confirmed and popularized by Lynn Margulis.

Contents

Bacterial obligate endosymbionts in marine oligochaetes

Endosymbiosis is a term which is used for both intra- and extracellular symbionts. In marine oligochaetes (e.g Olavius or Inanidrillus) the endosymbionts are extracellular and they fill the entire body of their host. These marine worms are nutritionally dependent on their symbiotic chemoautotrophic bacteria lacking any digestive or excretory system (no gut, mouth or nephridia).

Bacterial endosymbionts in other marine invertebrates

Extracellular endosymbionts are also represented in all 5 extant classes of Echinodermata (Crinoidea, Ophiuroidea, Asteroidea, Echinoidea, and Holothuroidea). Little is known of the nature of the association (mode of infection, transmission, metabolic requirements, etc.) but phylogenetic analysis indicates that these symbionts belong to the alpha group of the class Proteobacteria, relating them to Rhizobium and Thiobacillus. Other studies indicate that these subcuticular bacteria may be both abundant within their hosts and widely distributed among the Echinoderms in general.

Symbiodinium dinoflagellate endosymbionts in marine metazoa and protists

Dinoflagellate endosymbionts of the genus Symbiodinium, commonly known as zooxanthellae, are found in corals, molluscs (esp. giant clams , the Tridacna), and foraminifera. These endosymbionts drive the amazing formation of coral reefs by capturing sunlight and providing their hosts with energy for carbonate deposition.

Previously thought to be a single species, molecular phylogenetic evidence over the past couple decades has shown there to be great diversity in Symbiodinium. In some cases there is specificity between host and Symbiodinium clade. More often, however, there is a ecological distribution of Symbiodinium, the symbionts switching between hosts with apparent ease. When reefs become environmentally stressed, this distribution of symbionts is related to the observed pattern of coral bleaching and recovery. Thus the distribution of Symbiodinium on coral reefs and its role in coral bleaching presents one of the most complex and interesting current problems in reef ecology.

Bacterial obligate endosymbionts in insects

Among bacterial endosymbionts of insects, the best studied are the pea aphid Acyrthosiphon pisum and its endosymbiont Buchnera sp. APS, and the tsetse fly Glossina morsitans morsitans and its endosymbiont Wigglesworthia glossinidia brevipalpis . As with endosymbiosis in other insects, the symbiosis is obligate in that neither the bacteria nor the insect is viable without the other. Scientists have been unable to cultivate the bacteria in lab conditions outside of the insect. With special nutritionally-enhanced diets, the insects can survive, but are unhealthy, and at best survive only a few generations.

The endosymbionts live in specialized insect cells called bacteriocytes (also called mycetocytes), and are maternally-transmitted, i.e. the mother transmits her endosymbionts to her offspring. In some cases, the bacteria are transmitted in the egg, as in Buchnera; in others like Wigglesworthia, they are transmitted via milk to the developing insect embryo.

The bacteria are thought to help the host by either synthesizing nutrients that the host cannot make itself, or by metabolizing insect waste products into safer forms. For example, the primary role of Buchnera is thought to be to synthesize essential amino acids that the aphid cannot acquire from its natural diet of plant sap. The evidence is (1) when aphids' endosymbionts are killed using antibiotics, they appear healthier when their plant sap diet is supplemented with the appropriate amino acids, and (2) after the Buchnera genome was sequenced, analysis uncovered a large number of genes that likely code for amino acid biosynthesis genes; most bacteria that live inside other organisms do not have such genes, so their existence in Buchnera is noteworthy. Similarly, the primary role of Wigglesworthia is probably to synthesize vitamins that the tsetse fly does not get from the blood that it eats.

The benefit for the bacteria is that it is protected from the environment outside the insect cell, and presumably receives nutrients from the insect. Genome sequencing reveals that obligate bacterial endosymbionts of insects have among the smallest of known bacterial genomes and have lost many genes that are commonly found in other bacteria. Presumably these genes are not needed in the environment of the host insect cell. (A complementary theory as to why the bacteria may have lost genes, Muller's ratchet, is that since the endosymbionts are maternally transmitted and have no opportunity to exchange genes with other bacteria, it is more difficult to keep good genes in all individuals in a population of these endosymbionts.) Research in which a parallel phylogeny of bacteria and insects was inferred supports the belief that the obligate endosymbionts are transferred only vertically (i.e. from the mother), and not horizontally (i.e. by escaping the host and entering a new host).

Attacking obligate bacterial endosymbionts may present a way to control their insect hosts, many of which are pests or carriers of human disease. For example aphids are crop pests and the tsetse fly carries the organism (trypanosome protozoa) that causes African sleeping sickness. Other motivations for their study is to understand symbiosis, and to understand how bacteria with severely depleted genomes are able to survive, thus improving our knowledge of genetics and molecular biology.

References

Obligate bacterial endosymbiosis in marine oligochaetes:

Bacterial endosymbionts in echinoderms:

Symbiodinium dinoflagellate endosymbionts in marine metazoa and protists

Obligate bacterial endosymbionts in insects:


'"/>


(Date:10/15/2014)... Oct. 15, 2014   Neurotechnology , a ... the availability of the VeriLook Surveillance 3.0 ... provides real-time biometric face identification using live video ... cameras. The new version not only identifies faces ... from objects while they are moving through the ...
(Date:10/14/2014)... years since T. rex took its last ... is breathing life back into dinosaurs using high-powered computer ... has important implications for how dinosaurs used their noses ... of smell and cool their brains. , "Dinosaurs ... Jason Bourke, lead author of the new study published ...
(Date:10/14/2014)... a new kind of stem cell that can become either ... vessels, according to a study published today in the journal ... cell type contradicts current theory on how organs arise from ... origins of, and future treatment for, liver cancer., Thanks to ... complex being made up of more than 200 cell types. ...
Breaking Biology News(10 mins):VeriLook Surveillance 3.0 SDK Identifies Faces and Moving Objects, Differentiates Pedestrians from Other Moving Objects in Video Surveillance Systems 2VeriLook Surveillance 3.0 SDK Identifies Faces and Moving Objects, Differentiates Pedestrians from Other Moving Objects in Video Surveillance Systems 3Dinosaur breathing study shows that noses enhanced smelling and cooled brain 2Dinosaur breathing study shows that noses enhanced smelling and cooled brain 3Stem cell discovery challenges dogma on how fetus develops; holds insights for liver cancer and reg 2Stem cell discovery challenges dogma on how fetus develops; holds insights for liver cancer and reg 3
... The Organisers of the UN Conference on Climate Change (COP15) ... have asked IARU to organise this conference as part of ... conference is to try and capture some of the enormous ... adaption to climate change. Thus, the focus of the conference ...
... group of University of Southern California School of Dentistry ... the jawbones of some people taking drugs that treat ... sticky extracellular material, are causing jaw tissue infections in ... and assistant clinical professor at the USC School of ...
... functioning cardiac cells using mouse skin cells that had been ... stem cells. The finding is the first to ... dont involve the use of embryos or eggs, can be ... repair the heart and blood vessels. The discovery could ...
Cached Biology News:USC School of Dentistry researchers uncover link between osteoporosis drugs and jaw infection 2UCLA stem cell researchers create heart and blood cells from reprogrammed skin cells 2UCLA stem cell researchers create heart and blood cells from reprogrammed skin cells 3
Other biology definitionOther Tags