Navigation Links
ATPase


ATPases are a class of enzymes that catalyze the decomposition of adenosine triphosphate (ATP) into adenosine diphosphate (ADP) and a free phosphate ion. This dephosphorylation reaction releases energy, which the enzyme (in most cases) harnesses to drive other chemical reactions that would not otherwise occur. This process is widely used in all known forms of life.

Some such enzymes are integral membrane proteins (anchored within biological membranes), and move solutes across the membrane. (These are called transmembrane ATPases).

Transmembrane ATPases import many of the metabolites necessary for cell metabolism and export toxins, wastes, and solutes that can hinder cellular processes. An important example is the sodium-potassium exchanger (or Na+/K+ATPase), which establishes the ionic concentration balance that maintains the cell potential.

Besides exchangers, other categories of transmembrane ATPase include cotransporters and pumps (however, some exchangers are also pumps). Some of these, like the Na+/K+ATPase, cause a net flow of charge, but others do not. These are called "electrogenic" and "nonelectrogenic" transporters, respectively.

The coupling between ATP hydrolysis and transport is more or less a strict chemical reaction, in which a fixed number of solute molecules are transported for each ATP molecule that is hydrolyzed; for example, 3 Na+ ions inward and 2 K+ ions outward per ATP hydrolyzed, for the Na+/K+ exchanger.

Transmembrane ATPases harness the chemical potential energy of ATP, because they perform mechanical work: they transport solutes in a direction opposite to their thermodynamically preferred direction of movement—that is, from the side of the membrane where they are in low concentration to the side where they are in high concentration. This process is considered active transport.

ATP synthetase

The ATP synthetase (or ATP synthase) of mitochondria and chloroplasts is an anabolic enzyme that harnesses the energy of a transmembrane proton gradient as an energy source for adding an inorganic phosphate group to a molecule of adenosine diphosphate (ADP) to form a molecule of adenosine triphosphate (ATP). This enzyme works when a proton moves down the concentration gradient, giving the enzyme a spinning motion. This unique spinning motion bonds ADP and P together to create ATP. ATP synthetase can also function in reverse; that is, use energy released by ATP hydrolysis to pump protons against their thermodynamic gradient.

External links


'"/>


(Date:1/2/2020)... ... January 02, 2020 , ... With the integration, the company ... well as medical grade plastic products to the world’s leading pharmaceutical, medical device, ... are excited to bring even more advantages and convenience to our partners and ...
(Date:12/30/2019)... ... 2019 , ... It’s been quite a year for Lajollacooks4u. In fact, the ... having hosted a multitude of team-building events and cooking challenges this year. Teams, such ... and the company has worked hard to accommodate the growing demand for its services. ...
(Date:12/18/2019)... ... 17, 2019 , ... Mitotech S.A, a Luxembourg-based clinical-stage biotechnology ... U.S. Phase 3 study VISTA-2 building on positive results of VISTA-1 clinical study ... severe Dry Eye Disease (DED). SkQ1 belongs to the class of cardiolipin peroxidation ...
Breaking Biology News(10 mins):
Other biology definition